RedPlane: Enabling Fault-Tolerant Stateful In-Switch Applications

Daehyeok Kim§[‡]

Jacob Nelson[‡], Dan Ports[‡], Vyas Sekar[§], Srinivasan Seshan[§]

Served Served

Programmable networks are stateful

Problem: Switch failure

[1] Liu et al., Crystalnet: Faithfully emulating large production networks. In ACM SOSP 2017.[2] Meza et al., A large scale study of data center network reliability. In ACM IMC 2017.

Strawman solutions

Our work: RedPlane

Outline

RedPlane motivation

RedPlane design

Results

RedPlane design overview

Challenge 1: Correct replication in the data plane

Strawman: strict correctness used in server-based replicated systems

Buffer a packet until the state is replicated (exactly-once semantics)

Challenge 1: Correct replication in the data plane

Strawman: strict correctness used in server-based replicated systems

Expensive to buffer entire packets \otimes RedPlane-**Replication requests** enabled app External state store Responses Expensive to realize reliable transport in the switch data plane \otimes

Linearizable mode: Relaxed correctness

Insight: End-to-end network apps already tolerate lossy networks! **Our approach:** Linearizability-based relaxed correctness

Permitting some input/output packet loss
No need to buffer entire packets

Example: per-flow packet counter

 Sends a state initialization request

Example: per-flow packet counter

- Sends a state initialization request
- 2. Receives an ACK & initializes the local state

Example: per-flow packet counter

- Sends a state initialization request
- 2. Receives an ACK & initializes the local state
- 3. Replicates the updated state

External

state store

Red: 1

External state

Example: per-flow packet counter

ACK

(k=Red)

Ρ

RedPlane-

enabled app

Red:

Switch local state

P

- Sends a state initialization request
- 2. Receives an ACK & initializes the local state
- 3. Replicates the updated state
- 4. Receives an ACK & releases the output packet

Inconsistency due to unreliable channel

Problem: state in the switch and state store can be inconsistent due to out-of-order requests or request packet loss

Sequencing and lightweight retransmission

Our approach: A simple UDP-based transport with sequencing and lightweight retransmission

Challenge 2: Transparent to routing policies

A switch failure or recovery can cause routing traffic to another switch

Accessing stale state

Problem: A packet may access state state during failover or recovery

Accessing stale state

Problem: A packet may access state state during failover or recovery

Accessing stale state

Problem: A packet may access state state during failover or recovery

Lease-based state ownership management

Our approach: For a given flow, ensuring only one switch processes packets at a time using leases

Lease-based state ownership management

Our approach: For a given flow, ensuring only one switch processes packets at a time using leases

Lease-based state ownership management

Our approach: For a given flow, ensuring only one switch processes packets at a time using leases

Challenge 3: Handling high traffic volume

Switch data plane operates at up to a few billion packets per second

Challenge 3: Handling high traffic volume

Switch data plane operates at up to a few billion packets per second

Putting it all together

RedPlane provides a fault-tolerant state store abstraction to applications

Sequencing and lightweight retransmission mechanism (Correctness)

Linearizability-based correctness definition (Correctness) Bounded-inconsistency for write-centric applications (Correctness, Performance)

Outline

RedPlane motivation

RedPlane design

Results

Implementation

How does RedPlane affect application latency?

State initialization overhead (once per flow)

How much BW overhead does RedPlane add?

How fast the connectivity can be recovered?

Other results

Throughput of RedPlane-enabled applications

Low switch resource overhead of reliable replication protocol

Less than 13% of switch ASIC resource usage

Model checking for RedPlane protocol by using TLA+

Future directions

Better support for write-centric apps

Supporting non-partitionable states

Automatically enabling fault-tolerance with compiler/language support

Next generation switch architectures for fault-tolerance

Conclusions

Switch failures can affect the correctness of stateful in-switch apps

RedPlane provides a fault-tolerant state store abstraction

- · Linearizability-based practical correctness definition for in-switch apps
- Bounded inconsistency mode for write-centric apps
- · Sequencing and lightweight retransmission for reliable replication
- · Lease-based state ownership management

Offers fault tolerance with minimal performance and resource overhead

- No per-packet latency overhead for read-centric apps
- · End-to-end connectivity is recovered within a second

