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Abstract

Programmable switches have been touted as an attractive alterna-
tive for deploying network functions (NFs) such as network address
translators (NATs), load balancers, and firewalls. However, their
limited memory capacity has been a major stumbling block that has
stymied their adoption for supporting state-intensive NFs such as
cloud-scale NATs and load balancers that maintain millions of flow-
table entries. In this paper, we explore a new approach that leverages
DRAM on servers available in typical NFV clusters. Our new system
architecture, called TEA (Table Extension Architecture), provides a
virtual table abstraction that allows NFs on programmable switches
to look up large virtual tables built on external DRAM. Our ap-
proach enables switch ASICs to access external DRAM purely in
the data plane without involving CPUs on servers. We address
key design and implementation challenges in realizing this idea.
We demonstrate its feasibility and practicality with our implemen-
tation on a Tofino-based programmable switch. Our evaluation
shows that NFs built with TEA can look up table entries on exter-
nal DRAM with low and predictable latency (1.8–2.2 µs) and the
lookup throughput can be linearly scaled with additional servers
(138 million lookups per seconds with 8 servers).
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1 Introduction

Network functions (NFs) are an essential component in today’s on-
line service infrastructure. They are deployed on the critical path
of the infrastructure (e.g., at the front-end) where a large volume
of traffic with many concurrent flows needs to be handled. This
requires NFs to be scaled for overall network operations.

NFs have been traditionally deployed either using standalone
hardware appliances or a cluster of commodity servers (also known
as network function virtualization (NFV)) [29, 59]. More recently,
another approach has been gaining attention in the community:
NFs implemented on programmable switch ASICs (e.g., [5, 16, 53]).

However, we find that none of these approaches can handle
NFs when there is a combination of a large number of concurrent
flows (e.g., O(10M)) and a very high traffic rate (e.g., > 1 Tbps). A
programmable switch ASIC cannot serve a large number of concur-
rent flows that requires a large flow table due to its small on-chip
SRAM space although it has enough capacity to process a very high
traffic rate. Similarly, it requires several tens of hardware appli-
ances or hundreds of servers to handle the high-traffic rate, which
significantly increases operational cost.

We observe that the limited on-chip SRAM space is a key bot-
tleneck for programmable switch ASICs. If we could enable the
switch ASICs to store lookup tables on cheaper DRAM in a scalable
way, it could be a new enabler to serve a broader set of operating
regimes, which are defined by workloads and operating conditions
(i.e., traffic rate and the number of concurrent flows that NFs have
to process), cost-efficiently. In this paper, we envision a new system
architecture called TEA (Table Extension Architecture) that enables
the switch ASICs on the top of racks in an NFV cluster to leverage
DRAM on commodity servers.

While using server DRAM is an appealing low-cost and scal-
able solution, accessing server DRAM is inherently slower than
accessing on-chip SRAM. As we discuss in §3.1, without careful
design, this can significantly degrade processing performance and
availability of NFs. Indeed there are several technical challenges in
realizing this vision in practice:1
• First, for external DRAM access, while RDMA (Remote Directly
Memory Access) looks a promising solution, it is unclear how
to do RDMA from the switch ASIC without modifying it. Our
insight is that by leveraging the programmability of ASIC, we

1Our recent position paper proposes this high-level idea [47]. However, that work fails
to tackle these technical challenges and falls short of providing a concrete proof-of-
concept realizing the architecture.
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can implement a subset of the RDMA protocol that suffices for
our rack-scale deployment model in NFV clusters.

• Second, since each external DRAM access incurs high latency (a
few µs), TEAmust complete table lookups in a single-round trip
to DRAM and must continue processing other packets. At first
glance, it would seem that conventional cuckoo hashing [58]
would suffice. However, cuckoo hashing is not suitable for ex-
ternal DRAM because it can require multiple memory accesses
at times. Fortuitously, we find that bounded linear probing [67],
a design originally created for improving cache hit rates, can
be a basis for enabling table lookups guaranteed to complete
in a single round trip. In addition, we adapt this data structure
to provide temporary storage to support our deferred packet
processing needs.

• Third, to support NFs that require several hundred million
lookups per second, we need mechanisms to leverage the avail-
able DRAMandDRAM-access bandwidth acrossmultiple servers.
While traditional distributed hashing schemes (e.g., consistent
hashing [43]) help scale out the lookup throughput by dis-
tributing table entries and balancing lookup request load across
servers, we observe that they consume too many ASIC resources.
We show that simpler, resource-efficient hashing schemes, com-
bined with a small on-chip SRAM cache, can address both the
load balancing and scaling requirements.

• Lastly, for high availability, one may detect servers’ availability
changes (due to server failures or congested link) in the control
plane, but it could take several milliseconds to make the data
plane react to it, degrading overall performance. We demon-
strate that it is possible to repurpose existing ASIC’s features to
support rapid failure detection and fail-over in the data plane.
TEA provides a virtual table abstraction for lookup tables stored

across the combination of on-chip SRAM and external DRAM, creat-
ing the illusion of large, high-performance tables to NFs. Our focus
is on NFs such as L4 load balancers, firewalls, NATs, VXLAN or VPN
gateways that are compute-light and state-heavy. Developers can
write such NFs using a library of TEA APIs implemented in P4 [17]
which is a programming language for programmable switches. We
expose the APIs as modularized P4 codes so that developers can
easily integrate TEA with their NF implementations.

We implement a prototype of TEA in P4 and four canonical
NFs using the TEA API. We evaluate it with microbenchmarks as
well as NF benchmarks in our testbed consisting of a Tofino-based
programmable switch and 12 commodity servers. Our evaluations
show that TEA allows NFs running on the switch to look up ta-
ble entries with low and predictable latency (1.8–2.2 µs), and the
throughput can be scaled linearly by recruiting more servers (138
million lookups per secondwith 8 servers in our testbed). Compared
to server-based NFs with a single server, TEA-based NFs achieve up
to 9.6× higher throughput and 3.1× lower latency without consum-
ing the CPUs and many ASIC resources. We also show that TEA
can react to server availability changes within a few microseconds.

2 Background and Motivation

NFs are deployed in many network settings, including inside the
cloud and at the edge. They perform a wide range of tasks, ranging
from packet filtering and load balancing to encryption and deep

Hardware

appliance

Commodity

Server

Programmable

Switch

Performance 40 Gbps 10 Gbps 3.3 Tbps
Memory O(10GB)

DRAM
O(10GB)
DRAM

O(10MB)
SRAM

Price >$40K $3K $10K
Energy consumption 480W 200W 620W

Table 1: Comparison of NF deployment options. We excerpt

the information from product briefs [4, 7, 13] and prior

work [53, 59].

packet inspection. In this paper, we focus on compute-light and state-
heavy NFs, such as L4 load balancers, firewalls, NATs, VXLAN or
VPN gateways. Even though NFs in this category are not compute
intensive, they still need to support a large volume of traffic and
concurrent flows on the critical path (e.g., at the front-end of the
cloud). Thus, their performance and scalability are the key for
overall network operations.

There are three typical options to realize such NFs today: (1)
using standalone hardware middlebox appliances, (2) implementing
them on a cluster of commodity servers (i.e., NFV cluster) [19,
29, 59], and (3) implementing them on emerging programmable
switches [7, 9]. We note that while there are other options such as
implementing NFs on FPGA boards attached to servers (e.g., [31]),
we consider the above three options that have been widely studied
and deployed today.

Network operators may choose different options by consider-
ing the performance, memory size, cost, and energy efficiency of
each option based on their workloads and operating conditions (i.e.,
traffic rate and the number of concurrent flow that NF instances
have to process). To understand which option is better in which sce-
nario, we analyze a canonical NF, load balancers, in four operational
regimes.2 Table 1 compares these options in terms of performance,
memory size, price, and energy consumption, and we use these
numbers in our analysis below.
Regime 1: Low traffic rate (<100 Gbps) / Small number of

concurrent flows (e.g., 100K flows and ≈1MB per-flow state).

This regime can be served by using any of three options. While
supporting 100 Gbps traffic would require 3 hardware appliances
(∼$120K), or 10 servers (∼$30K), a single programmable switch can
support it with on-chip SRAM which is large enough to serve the
small flow state. Thus, using a programmable switch would be the
most cost and energy-efficient solution for this regime.
Regime 2: Low traffic rate (<100Gbps) / Large number of con-

current flows (e.g., 10M flows and ≈100 MB per-flow state).

A programmable switch cannot handle this workload since it does
not have enough SRAM to store the flow state. As mentioned above,
supporting 100 Gbps traffic would require 3 hardware appliances
or 10 servers. In both these options, the systems can easily store
the relevant flow state.
Regime 3: High traffic rate (>1 Tbps) / Small number of con-

current flows (e.g., 100K flow and ≈1 MB per-flow state). In

2While our analysis focuses on a specific case of load balancers, these observations
also apply to other NFs such as firewalls, gateway functions, NATs, and ACLs.
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this regime, using a programmable switch would be the most cost
and energy-efficient solution because the per-flow state can fit in its
SRAM space and it can easily serve the traffic. Hardware appliances
and commodity servers would require many nodes to support this
traffic rate making them very expensive (25 × $40K appliances vs.
100 × $3K servers vs. 1 × $10K switch).
Regime 4: High traffic rate (>1 Tbps) / Large number of con-

current flows (e.g., 10M flows and ≈100 MB per-flow state).

Many servers or appliances are required as the traffic rate increases
(e.g., 10 Tbps requires 1000 high-end servers, which costs $3M).
Although programmable switches can handle the traffic rate [7],
their limited memory makes it infeasible to support the needed flow
state. One could add more on-chip SRAM ($2-5K per GB) with chip
modification or more switches to address the memory limitation,
but costs would rise significantly.

In summary, our analysis suggests that: (1) servers and appliances
can handle the low-bandwidth regime effectively, (2) programmable
switches are great when flow-state fits in the limited SRAM space,
and (3) nothing handles themost demandingworkloadswell. Ideally,
if we could build an architecture that enables switches to utilize
more memory with cheaper DRAM (like servers) in a scalable way,
it would make programmable switches more broadly applicable
and serve the extreme regime cost-efficiently.

3 Design Space and Challenges

Building on the above analysis, we explore if and how we can po-
tentially leverage external DRAM that already exists in the network.
Now, there are two places where we can naturally find available
DRAM near the switch ASIC:
(1) Switch’s control plane. The control plane has a few GB of
DRAM to manage the control plane data. An ASIC could access
the DRAM via the PCIe channel between the ASIC and the control
plane CPU. Note that the PCIe channel has a limited bandwidth
which is lower than the ASIC’s per-port bandwidth. While this low
and fixed bandwidth is enough to process occasional control plane
traffic, it cannot support higher traffic rates (which can cause high
memory access rate) without significant hardware modifications.
Also, although in theory, it is possible to add additional DRAM to
the control plane, in practice, the size is fixed at design time. (e.g.,
8 GB in the switch in our testbed [14]).
(2) On-board off-chip DRAM. Some switch ASIC vendors have
added custom off-chip DRAM on the switch board [8]. This DRAM
is used for custom tasks such as buffering packets or storing specific
lookup tables. Similar to the control plane case, the memory access
bandwidth and size is fixed at design time, which makes it very
hard to scale without chip modification. Note that while a future
switch ASIC architecture might provide on-board off-chip DRAM
with larger size and higher bandwidth, it requires new interfaces
and mechanisms to access DRAM from a programmable pipeline.
We discuss this further in §7.

We observe that two options above do not scale in terms of
memory access bandwidth and capacity today, which are typically
fixed at hardware design time. We believe that support for scaling
becomes more critical as the total amount of traffic (both in terms of
traffic volume and number of concurrent flows) each switch needs
to process increases [12, 24].

Switch ASIC (Data plane)
SRAM

Switch board

Switch control plane

Single
Server

DRAMPipeline stages

B1B1

B2

(a) Naïve design and perfor-

mance bottlenecks (B1 and B2).

Multiple
Servers

DRAM

Switch ASIC (Data plane)
SRAM

Switch board

Switch control plane

Pipeline stages

(b) TEA enabling to access ex-

ternal DRAM in the data plane

without CPU involvement.

Figure 1: Comparison between RPC-based naïve design and

TEA to access external DRAM.

Our vision. In this paper, we take an alternative approach that
leverages DRAM in commodity servers in NFV clusters in a scalable
way. A typical NFV cluster (either inside the cloud or at the edge)
consisting of multiple racks of servers [19, 29, 32, 59] already has
several tens of GB of DRAM on each server. If we can reserve some
portion of DRAM and let the switch ASIC located at the top-of-rack
(ToR) access it, the ASIC could make use a large per-flow table,
which would not be possible with on-chip SRAM today.

Using a single server could still limit the access bandwidth, i.e.,
minimum of network bandwidth between the ASIC and the server,
and PCIe bandwidth in the server. However, we can leverage mul-
tiple servers to increase the aggregate bandwidth. Also, while the
ASIC uses DRAM in servers, CPUs on the servers can simultane-
ously serve other tasks such as compute-intensive NFs, including
traffic en/decryption or payload inspection, which cannot be sup-
ported by switches today.

If this can be realized, programmable switches can become an
effective way to serve high traffic rate involving a large number of

concurrent flows, and thus work for all the regimes we considered
earlier. However, realizing this vision has key design and imple-
mentation challenges, as we describe next.

3.1 Challenges

To understand why it is challenging to realize this vision, let us
consider a natural starting point based on prior work using tradi-
tional Remote Procedure Call (RPC) mechanisms [41, 57] (Figure 1a).
Specifically, the switch ASIC sends and receives RPC requests and
responses via the switch control plane to avoid adding complexity
(e.g., state management for reliable transport) to the data plane.
While this is functionally correct, there are three fundamental bot-
tlenecks:
(1) High and unpredictable latency.A table lookup can result in
high latencies because of the latency between the ASIC, the control
plane CPU, and the server CPU (over the network), which can take
a few hundred microseconds. Moreover, the uncertainty introduced
by the scheduling logic on the switch control plane and server CPU
can introduce jitter and high variability [46].
(2) Limited memory access bandwidth. The lookup throughput
is constrained by the minimum of the bandwidth between ASIC-
to-the-control-plane-CPU and control-plane-CPU-to-server-CPU.
Both bandwidths are typically very limited (e.g., PCIe bandwidth
between the ASIC and the control plane is a few tens of Gbps which
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is much lower than a few hundreds of Gbps of ASIC’s per-port
bandwidth available today) and fixed at hardware design time.
(3) Availability. If the server fails or the network link between the
control plane and the server becomes unavailable, the switch cannot
lookup tables on external DRAM, degrading NF performance.

We observe that the root causes of these problems are (1) the
involvement of CPUs at the control plane and the server and (2) the
use of the single server (Figure 1a). This motivates us to ask: Is it
possible to allow the switch ASIC to access external DRAM purely

in the data plane and without servers’ and the control plane’s CPU

involvement in a scalable way across multiple servers? To answer
this question, we must address the following challenges:
C-1. Data-Plane External DRAM Access. Switch ASICs typi-
cally do not have direct external DRAM access capability. Is it
possible to enable it without hardware modifications?

Even if the ASIC can somehow directly access external DRAM, it
can incur a few microseconds of latency which is an order of mag-
nitude slower than its packet processing speed. This long latency
creates the following two challenges:
C-2. Single Round-Trip Table Lookups. If we use conventional
hashing (e.g., cuckoo hashing [58]) for storing and locating table
entries in external DRAM,multiple DRAM accessesmay be required
to lookup an entry. Is it possible to make the ASIC do a table lookup
in a single round-trip to DRAM without involving server CPUs and
hardware modifications?
C-3. Packet Processing. The ASIC must be able to continue pro-
cessing the packet (e.g., modifying header fields) after completing
the lookup from external DRAM. In the meantime, it also needs to
keep processing subsequent packets in the pipeline. How can we
manage the packet until the lookup completes?
C-4. Load-Balanced Bandwidth Use. Although using multiple
servers (i.e., adding network links) increases external DRAM access
bandwidth, a subset of links could become overloaded due to the
access locality (i.e., most of memory accesses are destined to the
subset of servers’ DRAM). This makes it hard to utilize available
link bandwidth. How can we ensure that memory access loads are
balanced across servers?
C-5. Tolerating Server Churn. Access to external DRAM be-
comes unavailable when a server fails or the network becomes
congested (causing packet drops). How can we detect and react to
these events quickly to minimize performance degradation?

4 TEA Design

To address the above challenges, we design TEA, a virtual table
abstraction for tables stored across local SRAM and external DRAM.
Using the abstraction, NFs running on a ToR programmable switch
can perform key-based (e.g., 5-tuple of an IP packet) table lookups,
and TEA fetches the corresponding entries either from switch-
local SRAM or remote DRAM. When it accesses DRAM, it delays
the processing of the packet corresponding to the lookup request
without blocking the rest of the packet processing pipeline. TEA’s
lookup response handler resumes the delayed packet’s processing
when DRAM lookup completes.

Figure 2 illustrates this workflow. TEA provides a set of APIs
implemented in P4, a language to program NFs on programmable
switches, and exposes each component as a module in P4 [17, §13].

NF impl.

Switch ASIC 

+ TEA P4
API

DRAM

On-chip SRAM
Pipeline stages

Servers

  B
ina

ry

TE
A

ch
an

ne
l

P4 CompilerDeveloper

C
ontrol plane

Ctrl. API
TEA controller

Figure 2: NFs implemented in P4 can be extended with TEA

P4 API to look up tables across external DRAM and on-chip

SRAM. The control plane is (dotted lines) involved when es-

tablishing a TEA channel.

This enables developers to easily integrate TEA with their NF im-
plementations in P4. Once developers write their NFs using TEA
components, the unmodified P4 compiler generates a binary of
TEA-enabled NFs that can be loaded to the data plane and control
plane APIs that can be used for configuring TEA components in
the data plane.

TEA builds on the following five key ideas to address the chal-
lenges described in §3.1:
1. Leveraging ASIC programmability to enable simplified RDMA in

the data plane (§4.1).
2. Repurposing bounded linear probing to guarantee hash table

lookups in a single-round trip to external DRAM (§4.2.1).
3. Offloading packet store to external DRAM to enable asynchronous

lookups (§4.2.2).
4. Leveraging the small-cache theory [30] to scale out the through-

put (§4.3).
5. Repurposing ASIC’s hardware capabilities to detect and react to

sever availability changes in the data plane (§4.4).

4.1 DRAM Access in the Data Plane

To access external DRAM, we choose RDMA, which is quite com-
mon in service provider deployments [34, 55]. In comparison to RPC,
RDMA is an attractive option because it is designed specifically for
predictable performance memory access. It provides hardware sup-
port for a set of low-level memory operations such as read, write,
and a few atomic operations (e.g., fetch-and-add). Since it does not
involve the server CPU for either the memory access or the reliable
transport of messages, RDMA reduces both memory access latency
down to ≈2 µs , and delay jitter, and allows the use of the CPU for
other compute-intensive tasks.

Challenges of using RDMA from switch ASICs. However, we
still need to address two practical problems: (1) Is it feasible to gen-
erate RDMA packets purely in the switch data plane when DRAM
access is needed? (2) Can we support reliable RDMA transport
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Servers RDMA requestRDMA response

Switch ASIC (Data plane)

Per-QP metadata: [QPN, PSN, Outstanding requests]
Per-server metadata: [MAC addr, RoCE addr, Current QPN,     
                                      base memory addr, memory region size]

H Payload RoCE-H H Payload
Craft RDMA request

RoCE-H Response ResponseParse RDMA response

DRAM

Figure 3: Switch ASIC generates RDMA requests by adding

RoCE headers on incoming packets and parse RDMA re-

sponseswithout specialized capabilities forRDMA.Tomain-

tain reliable channels, the ASIC maintains per-QP and per-

server metadata.

within the switch data plane? (i.e., can switch ASICs maintain the
necessary per-connection RDMA context and protocols?)
Our approach.While it may be hard to implement reliable RDMA
in general on a programmable switch, we observe that we do not
need fully functional RDMA for our use case. Our key insight here
is that the programmable features of modern switch ASICs together
with the scoped deployment model of TEA enable us to implement
a small but sufficient subset of RDMA features we need.
1) Generating RDMA packets:With respect to the first sub challenge,
we note that the most popular RDMA technology today is RoCE
(RDMA over Converged Ethernet) protocol [37, 38], where RDMA
requests and responses are regular Ethernet packets with RoCE
headers. This means that ASICs can generate valid RDMA requests
by crafting RoCE packets without needing any RDMA-specific
hardware components.

Figure 3 illustrates this high-level idea. When the data plane
needs to access DRAM, it crafts an appropriate RDMA packet by
adding a series of specific RoCE headers to the incoming packet.
This include Ethernet headers, global route headers, base transport
headers, and RDMA extended transport header with RDMA meta-
data such as a queue-pair number (QPN), a packet sequence number
(PSN), a remote access key (Rkey), a remote memory address, and a
length of data to be written or read from the DRAM.3 The needed
metadata is provided via the control plane in advance.
2) Reliable RDMA: To address the second question of reliable RDMA,
we leverage the assumption that in TEA, DRAM servers are directly
connected to the ToR switch. This means that if we canmake RDMA
request and response packet not be dropped at the switch or NICs,
the RDMA channel becomes reliable. Thus, we can simplify the
RoCE protocol with two possible options. One is by ensuring the un-
derlying Ethernet network is lossless via Priority Flow Control [2].
In this option, a NIC sends a PAUSE request to the switch when
RDMA requests are buffered more than its threshold to prevent
packet drops due to buffer overflow. When the switch receives a

3QP is the connection abstraction used in RDMA communications (similar to the
socket) and QPN is a unique identifier assigned for each QP. RKey is assigned to each
memory protection domain where allocated memory region is registered.

PAUSE request, it has to buffer packets until the NIC allows to send
packets. We adopt this option in our prototype implementation in
addition to our simple switch-side flow control to cope with the
current NIC configuration as we describe in §5.3.4 Alternatively,
we can also configure a higher QoS-level for our RDMA traffic over
lossy fabric [18]. These options allow us to enable RDMA between
the ASIC and DRAM servers with a minimal amount of RDMA
context metadata and without complex retransmission schemes.
Specifically, it only needs to maintain a QPN (4 bytes) and tracks a
packet sequence number (4 bytes) and the number of outstanding
requests (2 bytes) for each queue-pair, which are used when crafting
RDMA requests for the QP. Maintaining such metadata in the data
plane requires only up to a few KBs of SRAM in total.

4.2 TEA-Table: Lookup Table Structure

The design of TEA’s table data structure, TEA-Table, addresses
two key issues: (1) how to complete a lookup in a single round-trip
to external DRAM and (2) how to defer processing of the current
packet until the lookup completes and continue processing other
packets without blocking. TEA-Table repurposes a data structure
that was originally designed for improving cache hit rates in soft-
ware switches [67] to achieve single RTT lookups and incorporates
remote packet buffers within the data structure to accommodate
deferred packet processing.

4.2.1 Single Round-trip Lookups: RDMA only provides low-level
memory operations such as read and write, using virtual memory
addresses. However, NFs require richer key-based lookup interface
to retrieve table entries with keys (e.g., an IP 5-tuple for an address
mapping table in NAT) from DRAM. Thus, TEA must map a key
to a virtual memory address. The challenge is that due to relatively
large DRAM access latency (≈2 µs), we must be able to locate and
fetch the entry in a single DRAM read.
Strawman solutions. At first glance, it appears we can use tra-
ditional hashing techniques. Indeed, many modern switch ASICs
adopt variations of cuckoo hashing [58] for exact-match lookups in
SRAM as it guarantees constant-time lookup. A caveat, however, is
that each lookup requires multiple memory accesses. This means,
with two-way cuckoo hashing, each lookup requires two indepen-
dent memory reads. While this is feasible with fast parallel lookups
on SRAM, our experience suggests that extending it to external
DRAM via RDMA channel would either significantly degrade the
performance of NFs or make the data plane logic complicated. To
reduce multiple DRAM accesses in cuckoo hashing, we need to
know precisely which of the two hash tables to access for a given
key. Recent work, EMOMA [60], uses additional Bloom filters [21]
in SRAM to address this issue. By checking for membership, the
query can be directed to the appropriate hash table. Since there is a
risk of false positives in the filter, EMOMA has a more complex item
insertion that checks if inserting a new entry causes false positives.
Unfortunately, this makes it impractical.5

4In our experiments, we observe that our switch-side flow control mechanism prevents
a NIC buffer from being overflowed before the NIC generates PAUSE frames.
5In our simulation, it takes several hours to insert just a few tens of million entries and
implementing BFs for such a scale consumes other resources across multiple packet
processing stages in the ASIC. Since such a slow insertion speed with a non-negligible
amount of resource consumption makes this approach impractical, we do not consider
this design.
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(a) Cuckoo hashing.
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(b) Bounded linear probing.

Figure 4: Cuckoo hashing and bounded linear probing. In

this example, there are 6 buckets and 2 cells per bucket. The

numbers on the top and right side indicate cell and bucket

indices, respectively.

Our approach.We build on a recent approach called Bounded Lin-
ear Probing (BLP) [67]. BLP was originally designed for improving
cache hit rates and reducing lookup latency in software switches.
Somewhat serendipitously, we find that it can also be used in our
setting. Figure 4 illustrates the differences between cuckoo hashing
and BLP. When placing and looking up a table entry, instead of
using two hash functions as in cuckoo hashing (Figure 4a), BLP
uses one hash function and lets the second bucket be placed right
next to the first bucket (Figure 4b).

We find that BLP’s design lends itself to fetching both hash
buckets in a single RDMA read. However, since BLP is designed
for caching, we need to handle colliding entries differently. In BLP,
when hash collisions happen, it evicts colliding entries and puts
them to the main memory region (i.e., DRAM). In contrast, in TEA,
since the table is already located in DRAM, we put colliding entries
to switch SRAM, making all entries exist in either SRAM or DRAM.
Although it consumes some amount of SRAM space, we empirically
prove that the collision rate is only 0.1% for the same size of the
hash table as the cuckoo hash table and the same number of keys
inserted. For example, when the total number of table entries is
80 million, 80K colliding entries are stored in SRAM, which takes
around 4MB in the NAT mapping table with IPv6 addresses. This
design is much simpler than the cuckoo hash-based approaches
and requires fewer resources in the ASIC while guaranteeing at
most one RDMA read per lookup.

4.2.2 Deferred Packet Processing: Another key challenge is storing
the packet while DRAM is accessed. This is especially critical since
the ≈2 µs DRAM access time is very long in the context of high-
speed switching where a packet is processed every nanosecond. A
naïve solution would be to buffer the packet using on-chip SRAM.
However, it is undesirable to use scarce SRAM for buffering a large
number of packets during DRAM access.

We address this issue by storing packets to DRAM and reading
back the packet along with retrieving the table entry. Specifically,
we propose TEA-Table which extends our hash table structure by
employing scratchpads. In each scratchpad, we temporarily store
a packet during lookups. As shown in Figure 5, in TEA-Table, we
allocate a scratchpad for each bucket large enough to hold an MTU
size packet. Note that our design requires the path MTU between
the switch and the DRAM servers to be larger than the end-to-end
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Figure 5: Design of TEA-Table with scratchpads. Scratch-

pads temporarily store original packets during lookups. ith

bucket of the shadow table has a copy of ((i + 1) mod n)th

bucket of the original table (n = 6 in this figure).

MTU. In our prototype implementation, we set the path MTU size
to 9000 bytes and the end-to-end MTU to 1500 bytes.

Hardware constraints of current RDMA NIC and switch ASIC
impose another challenge. Since the NIC allows an RDMA read
operation to read only a continuous memory region, with a naïve
design of TEA-Table, an original packet is placed between two
buckets in a lookup response, as illustrated in Figure 5a. While we
need to parse both buckets, with this format of a lookup response,
the ASIC often cannot parse the second bucket (blue-colored) when
the original packet (orange-colored) is large. This is because high-
speed switching ASICs usually can parse only the first few hundreds
of bytes in each packet.

To address this issue, we put a shadow table whose ith bucket
contains a copy of the ((i + 1)mod n)th bucket of the original table,
wheren is the number of buckets in the table. As shown in Figure 5b,
the shadow table allows placing two buckets consecutively before
the scratchpad in the lookup response packet. In this way, the
switch can parse two buckets. Although the shadow table incurs
additional DRAM consumption, given a small bucket size (<150 B)
and a large available DRAM size (> O(1GB)), the cost is reasonable
to achieve our goal.

4.2.3 TEA-Table operations: Given these building blocks, we now
describe operations in TEA-Table.6
• Inserting an entry: Since it takes some time to complete an inser-
tion operation, new entries are first inserted in to an SRAM stash,
which is a small SRAM space to keep the pending entries. When
there is no room in both buckets, our insertion logic running
on the control plane chooses a victim cell and replaces it with
the new key. In the next iteration, the logic tries to insert the
key from the victim cell. If there still exists a key that fails to be
inserted afterMaxTries iterations, it remains in the SRAM Stash.
Once the insertion is completed, the entry will be removed from
the stash.

• Deleting an entry: Deletion is a simple operation which takes
a key of a target entry as a parameter. To delete the entry, our

6The pseudocode for each operation can be found in Appendix A.
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deletion logic running on the control plane locates the cell of
the entry using the same logic as in the insertion operation and
overwrites the cell with zeros.

• Lookup an entry: When an NF requests a lookup for an entry,
our lookup logic first checks whether it exists in SRAM Stash
or Cache (we explain the cache in §4.3), and if it does, the entry
in SRAM is returned. Otherwise, after retrieving the DRAM
address of the bucket, it uses RDMA to write the packet to the
scratchpad of the bucket and then performs an RDMA read of
the entire bucket including the packet stored in the scratchpad.

• Lookup response handler:Upon receiving the RDMA read request,
the NIC sends an RDMA read response containing a lookup re-
sponse back to the switch. To handle the lookup response at
the switch, we introduce Lookup response handler, which is a
similar concept as the callback handler in other programming
languages. Upon receiving a lookup response, the handler re-
turns an entry and the original packet parsed from the response.
TEA allows developers to define custom actions in the handler
(e.g., modifying header fields with the fetched entry).
Note that as the insertion and deletion operations are relatively

complex compared to the lookup operation, the control plane has
to execute them. Due to this constraint, our current design does
not support NFs that add and delete table entries in the data plane.

4.3 Multiple DRAM Servers

Recall from §3, we can achieve higher lookup throughput using mul-
tiple servers. To utilize the available access bandwidth effectively,
we need to answer the following questions: (1) How to partition
and distribute a TEA-Table across multiple servers? (2) How to
balance memory access load across the servers?
Strawman solution. To partition the table and provide load bal-
ancing, we can consider conventional distributed hashing schemes
such as consistent hashing [43] and rendezvous hashing [64] as
they can achieve good load balance among servers by partitioning
hash tables. However, in these algorithms, each server is in charge
of many non-contiguous parts (i.e., buckets) of the table. In turn,
this causes the switch ASIC to maintain a large number of ⟨bucket
range, server ID⟩ mappings, consuming a non-negligible amount
of TCAM space. For example, if one wants to implement consistent
hashing, supporting N servers with 100N virtual nodes7 can use
up to (100N − 1) range-matching rules.
Our approach. Instead, we apply a simpler, resource-efficient hash-
ing scheme to partition the table. We split the entire hash table into
N sub-tables that contain buckets in a contiguous hash space and
distribute them to N servers. The size of each sub-table can be dif-
ferent depending on the available DRAM provided by each server.
This design requires only N range-matching rules in TCAM to
locate a server for a key.

While this simple design reduces the TCAM usage, it may not
guarantee the same load balance as the traditional distributed hash-
ing approaches. Fortunately, we find that adding a small cache to
the switch SRAM is helpful for load balancing across the servers. In
particular, we leverage the theoretical results that caching at least
O(N logN ) popular entries where N is the number of servers, not
7In consistent hashing, multiple virtual nodes are assigned to each physical node for
better load balancing [43].

the number of entries, can provide uniform load balancing across N
servers regardless of traffic patterns or skewness [30]. For example,
for NFs using per-flow table entries, the popularity can be defined
as the number of packets in each flow. Specifically, we keep track
of the popular entries within the data plane using a count-min
sketch [25], for which efficient switch data plane implementations
are already available [40, 50].

As an additional benefit, this cache also reduces the total DRAM
access traffic in TEA. When an NF looks up the cached entries, the
requests are absorbed by the switch without consuming DRAM
access link bandwidth, thus reducing the number of lookup requests
that need to be served by the NICs. In practice, the small cache
can help achieve near switch line-rate throughput since only a few
popular entries are frequently requested and consume a significant
portion of throughput [20, 26, 62]. We show the effectiveness of
caching for load balancing and throughput improvement in §6.1.

4.4 High Availability

Asmentioned in §3, TEA needs to detect and react to lookup failures
to ensure high availability. We consider the following two lookup
failure modes: (1) high link utilization due to regular network traffic
(i.e., other than lookup requests) could cause table lookup requests
be dropped. (2) When a server fails, lookup requests destined to the
server cannot be completed.

Strawman solution. Failures could be detected by periodically
checking the port counters (to estimate link utilization) and port
status (as an indicator of server failures) from the control plane.
However, it could take a few tens of milliseconds from detecting an
event to updating the state in the data plane. The delay can result
in: (1) dropping many lookup requests due to the out-of-date state
and (2) overlooking short-duration events (e.g., microbursts).

Our solution. To reduce the delay, we repurpose the meter and
packet generator engine of the switch ASIC to estimate port uti-
lization and port status, respectively. Typically, the meter, which
implements the RFC 2698 [36], is used for enforcing QoS policies
(e.g., rate limiting). When it is executed, it returns a color (red, yel-
low, or green) based on pre-configured rates (i.e., if the utilization
exceeds the rate, the meter returns red). The packet generator en-
gine is typically configured to inject packets into a switch pipeline
when a certain event happens mainly for diagnosis purposes.

To detect high port utilization, we set a threshold (link bandwidth
in bps) for the per-port meter and get colors for ports where a
lookup request can be routed. To detect a port down event, we
configure the packet generator engine to generate a packet when
ports go down. By processing the generated packet, TEA updates
the port status table in the data plane. Based on these two per-port
state information (utilization and status), TEA decides an egress
port for a lookup request (i.e., an active port that is not overutilized).
Note that since the meter is updated after a packet is completely
received, it can lag behind less than a microsecond. We show that
the gap is small enough to make it useful to react to high link
utilization in §6.1.

In our prototype, we replicate hash tables in TEA-Table to two
servers and let TEA choose a server based on the availability.
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4.5 Putting It All Together

Figure 6 illustrates the key components of TEA on the switch data
plane and servers, and how an NF uses it for packet processing.
When the NF performs a lookup with a key using the TEA APIs,
TEA first updates the count-min sketch of the key. Then, it checks
whether an entry for the key exists in SRAM Stash or Cache (green-
colored). If it exists, it directly passes the entry to the NF. Otherwise,
it resolves a memory address and server ID using the memory
address resolver. It then generates an RDMA write of the packet
contents to the scratchpad and an RDMA read of the table row
using the memory access requester (orange-colored). This design
guarantees that RDMA write and read requests are always destined
to the same server, and with our flow control mechanism described
in §5.3, both requests are not issued and a packet is dropped when
the destination server is overloaded. Upon receiving an RDMA
request from the switch, RDMA NICs on servers fetch entries from
DRAM and send them back to the switch. Then, the lookup response
handler extracts matched entries and the original packet contents
to pass them to the NF.

Overhead of TEA.When an NF accesses external DRAM for table
lookups usingTEA, it incurs some amount of latency and bandwidth
overheads for packet processing. For latency, as we show in §6.1, it
adds up to around 2 µs per-packet latency depending on the packet
size. For bandwidth, since TEA generates additional RDMA packets
for external DRAM lookups, it affects both the switch pipeline
and link bandwidth consumption. Within the switch pipeline, as it
replicates an incoming packet to generate RDMA write and read
packets, it doubles the bandwidth usage of the egress pipeline. It
also consumes the same amount of link bandwidth between the
switch and a server where a target entry is located. On the server
side, while TEA does not involve CPUs, it consumes some amount
of servers’ memory bandwidth, which may affect performance of
memory-intensive applications running on servers, especially when
the memory bandwidth is fully utilized. Note that if an entry for
the packet is already cached, there is no overhead.

Network function State Table size

(MB)

NAT Per-flow address mapping 525
Stateful firewall Per-flow connection state 353
Load balancer Per-flow connection mapping 525
VPN gateway Ext.-to-int. tunnel mapping 343

Table 2: The NFs we developed with TEA. Table sizes are es-

timated by assuming 10million entries with IPv6 addresses.

5 Implementation

5.1 Data and Control Plane

We implementTEA’s data plane in P4 [22] and compile it to Barefoot
Tofino ASIC [7] with P4 Studio [6]. In the memory address resolver,
we use Tofino-embedded crc64 as a hash function to locate a bucket
in TEA-Table. We implement the server ID resolution using a
range-matching table. In the memory access requestor, to craft
lookup request packets, we make the packet replication engine in
the ASIC replicate an incoming packet into two packets. The engine
ensures that there is no interleaved packet between two replicas.
Based on the replicas, it generates RoCE packets (i.e., an RDMA
write and read) by adding RoCE headers on top of the packets based
on the metadata resolved by the memory address resolver.

We implement the count-min sketch [25] for collecting the sta-
tistics and determining popular entries, similar to that of prior
work [40, 51]. We use 4 register arrays and 64K 16-bit slots per
array to implement sketches. When the sketches detect a popular
key (i.e., counts of the key exceed a threshold), it reports the key to
the control plane by using the digest feature in the ASIC. The digest
internally maintains a Bloom filter that prevents duplicate keys
from being reported. The control plane populates popular entries to
the cache which is implemented as a regular exact-matching table.
We use a cache of size N=1024 in our prototype which consumes
approximately 55 KB of SRAM in NAT for IPv6 addresses.
Switch control plane and server agent.We implement the switch
control plane in Python and C. It manages the ASIC via the ASIC
driver using a runtime API generated by the P4 compiler. The
server agent running on servers is written in C, which initializes
an RDMA NICs on the servers and communicates with the switch
control plane when it establishes RDMA connections.

5.2 Programming NFs with TEA

Our prototype implements TEA APIs as a library of modularized
P4 codes using the concept of control block in P4 [17, §13]. Each
control block implements key modules such as the lookup response
handler, memory address resolver, and memory access requestor.
Developers provide TEA with a definition of key (e.g., 5-tuple) used
of a lookup table, a structure of the table stored in DRAM (e.g.,
using struct in C), and where to store the lookup response for
further packet processing. Figure 7 shows how these blocks would
be used to implement NAT.

To demonstrate the applicability of TEA, we implement four NFs
in P4 using TEA: a NAT, a stateful firewall, a load balancer, and a
VPN gateway. Table 2 describes the state each NF maintains using
TEA and its estimated size. Brief descriptions of each are below,
and simplified P4 codes are in Appendix B.
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NAT. The NAT implementation uses the TEA to store NAT transla-
tion tables, to lookup a ⟨private IP, Port⟩ pair for a given 5-tuple. It
modifies the IP address and port header fields using lookup results.

Firewall.The firewall stores the connection state to external DRAM
using TEA. For an external connection, the firewall looks up a con-
nection state and uses it to determine how to handle packets.

Load balancer. The load balancer stores the per-flow server map-
ping table to external DRAM using TEA. For each incoming packet,
it looks up a ⟨Backend server’s IP address, Port⟩ from the table.

VPN gateway. We implement a VPN gateway (e.g., [11]) based on
the details described in prior work [19]. It manages the external-to-
internal tunnel mapping table consisting of a ⟨customer’s external
tunnel ID, VM IP⟩ pair as a key and a ⟨Server IP, internal tunnel ID⟩
pair as a value. For incoming packets from customers, the gateway
looks up the table to retrieve corresponding server IPs and internal
tunnel IDs, and translates packets.

5.3 Limitations

The NICs in our testbed limit the maximum number of outstanding
RDMA read requests to 16, and if there are more requests than
the limit (i.e., overloaded), they drop the requests and the QP state
becomes invalid. To prevent the NICs on servers from being over-
loaded, we implement a simple flow control in the switch data
plane, which counts and limits the number of outstanding read
requests. If there is a lookup request and the number of outstanding
requests has already reached to the limit, it drops the request (i.e.,
not generating both RDMA read and write requests), causing a
packet drop. This may affect the end-to-end performance. We plan
to design a mechanism that routes lookup requests to an alternative
DRAM server in such a case, instead of dropping packets. Also,
currently, we assume that there exists at least one server that is
not overloaded, and if there is no available server, TEA does not
generate lookup requests and drops the packets as above.

While our NF implementations (§5.2) access one large table,
some NFs may require multiple large tables. Although the current
design ofTEA can support multiple tables throughmultiple external
DRAM accesses, we plan to improve its efficiency as future work.

6 Evaluation

We evaluate TEA on a testbed consisting of a programmable switch
and commodity servers using both real data center network packet
traces and synthetic packet traces. Our key findings are:
• With a single server, TEA provides a predictable lookup la-
tency (1.8–2.2 µs) and throughput (7.3–10.9 million lookups per
second) for different sizes of packets. With multiple servers, a
small cache helps balance loads across servers across different
skewness parameters. With the cache, adding servers scales the
throughput effectively and 8 servers can perform 138 million
lookups per second under a skewed workload. (§6.1).

• Compared to server-based NFs, TEA-enabled NFs are cost effec-
tive. TEA shows up to 9.6× higher throughput and 3.1× lower
latency under the same hardware configuration. Even under
an optimal setting for server-based NFs, TEA still shows ≈2.3×
higher throughput without requiring costly hardware (§6.2).

• TEA-enabled NFs can serve traffic with latency and throughput
that is comparable to the switch-only implementation (i.e., NFs
running on a switch without accessing external DRAM) in the
common case (§6.2).

• TEA provides these benefits without incurring much ASIC re-
source overhead. It consumes on-chip resources, including SRAM,
TCAM, and hash bits, all less than 9% (§6.3).

Experimental setup. Our testbed consists of a Wedge 100BF-32X
32-ports programmable switch [14] with a Tofino ASIC and 12
servers equipped with two Intel Xeon E5-2609 CPUs (8 logical cores
in total), 64 GB RAM, and a 40 Gbps Mellanox CX-3 Pro RDMA
NIC. The servers run Ubuntu 18.04 with the kernel version 4.4.0.
All servers are directly connected to the switch. We use 4 servers
as packet generators and 8 as DRAM servers.
Traffic workloads. We use both packet traces collected from a
real data center network [1] and synthetically generated ones. The
packet sizes vary (64–1500 B) in the real trace. The synthetic traces
are based on the observations from several data centermeasurement
studies [20, 26, 62]. We generate packet traces with the flow size
distribution in terms of the number of packets per flow that follows
Zipf distribution with the skewness parameter (α=0.99, 0.95, 0.90).
We use a keyspace of 1 million randomly generated IPv4 5-tuples
when creating packet traces. We generate multiple packet traces
with different packet sizes and skewness parameters. We replay the
traces using DPDK-pktgen [3] on packet generator nodes. In our
testbed, each traffic generator node can generate 64 B packets at
around 34.54 Mpps and 1500 B packets at 40 Gbps.

6.1 Microbenchmarks

Single-server lookup latency and throughput. First, we eval-
uate the performance of the DRAM access channel with a single
server. For this experiment, we disable the SRAM cache. For latency,
we inject 10,000 packets of different sizes (64–1500 B) to measure
the lookup time. As a baseline, we setup two servers directly con-
nected and run ib_read_lat in perftest [10] to measure RDMA
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read latencies for different message sizes. For throughput, we replay
the trace for 30 seconds and measure the number of lookups com-
pleted during the period. Since the memory access pattern might
affect the throughput, we force TEA to access buckets sequentially
or randomly in this measurement.

Figure 8a shows the median, 10th and 90th percentile of lookup
time.We see that each lookup takes 1.8–2.2 µs and the latency grows
with the packet size, which is higher than raw RDMA reads (0.1–0.2
µs). This is mainly because our RDMA read request and response
packets are larger than raw RDMA read packets. First, due to switch
ASIC limitation, we are not able to remove an original packet from
each replicated packet. This makes each RDMA read request packet
have the original packet as a trailer. Second, in TEA, each RDMA
read response packet consists of a bucket and the original packet,
as illustrated in Figure 5b.

Figure 8b shows the lookup throughput with different packet
sizes. At the maximum traffic rate we can generate in our testbed,
the server NIC can handle 7.3–10.9 million lookups per second, and
there is the only negligible difference (up to 0.02 million lookups per
second) between sequential and random memory access patterns.

Overall, our evaluation shows TEA’s remote DRAM access chan-
nel can provide predictable performance which is close to the raw
RDMA performance.
Throughput scaling with multiple servers. Next, we evaluate
the effectiveness of using multiple servers and a small cache to scale
up the lookup throughput. Here, we replay synthetic packet traces
consisting of 64 B packets with the different skewness parameter (α )
for the flow size distribution and measure the number of lookups
served by each server with/without the cache enabled.
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events.

Figure 9a shows that the lookup load distribution is skewed
across servers without the cache. We also observe that such a
skewed access pattern limits the aggregate when the lookup request
rate is high, even if there is available link bandwidth to servers.
Finally, we see that with cache, even with the most skewed access
pattern (α=0.99), the load is evenly spread across servers and 49%
of requests are served by the cache.

Next, we measure the aggregate lookup throughput varying the
number of servers with different α values. As shown in Figure 9b,
in all four cases, while the aggregate throughput scales linearly
as we add more server, there is the difference in achievable max-
imum throughput depending on the skewness and the existence
of the cache. We see that the more skewed the load distribution,
the higher aggregate throughput TEA can support with the cache.
When α=0.99 or 0.95, TEA can process 138 million lookups per
second with 8 servers and the cache. Note that this performance is
limited by the maximum packet generation rate we can achieve in
our testbed.

One natural question regarding the throughput would be what is
the maximum throughput an NF with TEA can achieve with N servers

in a rack? The evaluation result shows that with 8 servers TEA can
support up to 138 million lookups per second. If we extrapolate this
result, it means that the NF can process up to 138/8 × N million
packets per seconds, which is not high enough to support very high
traffic rate with small size packets, especially when skewness is not
high, and this is a limitation of our current design. For example, to
support a few billion packets per second traffic rate, TEA requires
more than a hundred servers, which is way more than a number of
servers typically existing in a rack and a number of switch ports.
Note that this analysis may not be perfectly accurate because as
mentioned above, the measured maximum throughput is capped
by the packet generation rate in our testbed. We plan to analyze
the system throughput by injecting packets at higher rates with
more servers.
Availability. Next, we evaluate how TEA reacts to server churn by
setting up 2 servers, loading the same table entries using server-1
as a primary and server-2 as a secondary server. We replay the
64 B packet trace and measure the lookup throughput by disabling
the cache. For the result in Figure 10, we inject the background
traffic from packet generators to server-1 to emulate link utilization
increase. We see that TEA starts sending lookup requests to server-
2, and the throughput reaches the maximum within a second (at
around 24 sec.). At this point, server-2 becomes primary. We then
stop injecting the background traffic and disconnect server-2 to
emulate a server failure. We can see that TEA starts routing lookup
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Network func.

TEA w/o cache TEA w/ cache Server-based

Lat. Tput. Lat. Tput. Lat. Tput.
(µs ) (Mpps) (µs ) (Mpps) (µs ) (Mpps)

NAT 2.34 10.64 1.93 79.37 5.62 8.49
Stateful firewall 2.35 10.58 1.91 79.23 5.59 8.37
Load balancer 2.33 10.61 1.91 79.34 5.64 8.37
VPN gateway 2.30 10.80 1.92 79.45 5.99 8.25

Table 3: Throughput and latency of NFs implemented using

TEAwith a single server and corresponding software imple-

mentations running on a single server (4 CPU cores). Note

that TEA does not involve the CPU on the server.
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Figure 11: Performance of NAT using TEA.

requests to server-1 as soon as it detects the event (at around 71
sec.). We observe that TEA can react to the changes in the link and
server availability quickly despite a slight throughput drop at the
time of failure.

6.2 NF Performance

Comparison with server-based NFs.We note that many factors
including hardware configurations (e.g., number of CPU cores)
and software optimizations can affect the performance of software-
based NFs. Our goal here is to show the cost benefit of TEA by
comparing the performance with the same hardware configuration
(i.e., a server connected to a switch). For the evaluation, we imple-
ment NFs described in Table 2 using Click-DPDK [15] which is one
of popular ways to implement high-performance NFs. We run them
on the server described above.

For a fair comparison, we focus on a per-packet processing la-
tency and throughput for 64 B packets with a single server for TEA
and server-based NFs. We inject packets using 4 traffic generator
nodes (max. traffic rate is ≈138 Mpps). Table 3 summarizes the
results with median values for each experiment. Within each imple-
mentation option, there is no significant differences between NFs.
Between TEA and server-based NFs, TEA shows up to 1.3× and
9.6× higher throughput, without and with the cache, respectively.
For latency, TEA is up to 2.6× faster without cache and 3.1× faster
with cache. TEA does not involve the server’s CPU at all during
the experiments while server-based NFs fully utilize 4 CPU cores.
Note that with more CPU cores, the server-based implementations
could achieve higher throughput, ideally, close to the NIC’s raw
performance (≈34 Mpps). Even compared to that case, TEA with
cache can still achieve ≈2.3× higher throughput with much lower
hardware cost since it does not involve the CPU.

Resource Additional usage

Match Crossbar 12.6%
SRAM 8.5%
TCAM 0.4%
VLIW Instruction 4.2%
Hash Bits 6.3%

Table 4: Additional switch ASIC resources used by TEA.

Comparison with switch-based NFs. To understand the over-
head that TEA incurs, we compare the performance of a specific
NF, NAT, running on a programmable switch, when using TEA and
when using local SRAM tables (referred as baseline). The results
for other NFs are similar.

To measure latency, we replay both synthetic and real data center
packet traces [20] consisting of 64 B packets. Note that since the
real traces consist of varying sizes of packets, we make the payload
size of each packet be 64 B with the original headers (i.e., the flow
information is maintained). To measure the per-packet latency, we
record two timestamps when packets come into the switch and
leave the switch after the NAT processes the packet. Figure 11a
shows the CDF of the latency distribution. The baseline and uniform
represent the best and worst possible performance, respectively.
We see that the more skewed the flow size distribution is, the lower
the median latency is. Interestingly, we observe that the real traces
show a skewness even higher than α=0.99. In the traces, top 95
popular flows take more than 50% of total flows), so the cache can
serve more packets, lowering the median latency. Regardless of the
skewness, we see that the variance is small (no long tail), resulting
in the predictable latency.

To measure throughput, we replay real data center packet traces
at the rate which is higher than the original rate at which it was
captured. Since the packet sizes vary, we measure the throughput
in Gbps rather than Mpps. A single packet generator node can
replay the trace at 14.48 Gbps, thus the maximum transmission
rate we could achieve is around 57.92 Gbps with our four packet
generator nodes. Figure 11b shows the throughput of NAT with
varied transmission rates. We see that NAT with TEA can serve the
traffic at the incoming rate for all cases.

6.3 TEA ASIC Resource Usage

We evaluate how much ASIC resource is consumed only by TEA
based on the P4 compiler’s output. Note that as mentioned in §4.2.1,
the number of colliding entries in TEA-Table that are stored in the
SRAM is 0.1% of the total number of entries. Thus, the SRAM space
usage depends on the total number of inserted entries, and in this
evaluation, we insert 10 million entries. Table 4 shows the resource
consumption. We see that there are plenty of resources remaining
to implement other functionality on the ASIC along with TEA. It
consumes some amount of SRAM, TCAM, VLIW instruction, and
hash bits, all less than 9%. Match crossbar is the most consumed re-
source. We observe that count-min sketch, cache, stash, and lookup
response handler consume most of the match crossbar. Memory
address resolver and access requestor modules consume SRAM and
hash bits to store metadata for RDMA connections and resolve
bucket and server IDs.
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7 Discussion

Deployment locations.As a starting point, we focus on designing
TEA for ToR switches in NFV clusters. However, TEA can be de-
ployed in other locations. In data center racks, one can enable TEA
at ToR switches with compute servers. For that, we need to make
sure that there is unused DRAM space in servers and link band-
width. Moreover, our design can be extended to non-ToR switches
(e.g., aggregation-layer switches) in data centers, which do not have
directly connected servers under it. Since it requires multi-hop rout-
ing for lookup requests, we need to have a careful design that deals
with longer and (possibly) unpredictable lookup latencies and un-
reliability. For example, with RoCEv2 protocol [38], which runs
on top of IP/UDP and supports multi-hop routing, external DRAM
access requests from upper-level switches can be routed to servers.
Match types. In this paper, we mainly focus on exact-matching se-
mantics. Other NFs may require other lookup types such as longest-
prefix matching (LPM). Previous work emulates LPM using exact-
matching [65] or converts an LPM table into a large exact-match
table [45]. We can leverage such ideas to support other lookup types
in TEA.
Use cases. Although the current design of TEA-Table provides a
key-value based table abstraction, we can extend it to support other
use cases. For example, by adopting the FIFO queue abstraction,
TEA allows utilizing external DRAM as a large packet buffer which
can be useful for handling packet drops due to congestion.
Other programmable switch ASICs.While we use Tofino-based
programmable switches for our implementation, we believe our de-
sign can be implemented on other switch ASICs since hardware ca-
pabilities leveraged in TEA (i.e., packet manipulation, meter, packet
generation engine, etc.) are general features supported by most
switch ASICs available today.
TEAusing on-board off-chipDRAM.Asmentioned earlier, some
switch ASICs support on-board off-chip DRAM for specific pur-
poses such as packet buffers and select lookup tables [8]. As the traf-
fic demand increases, programmable switch ASIC vendors may also
consider to adopt such on-board DRAM. However, to use DRAM in
a flexible manner, they need to address the same practical challenges
as the ones described in this paper, including asynchronous and
low-latency DRAM access without stalling the packet processing
pipeline. Thus, we believe that our techniques designed for TEA can
be extended for such a future programmable switch architecture.

8 Related Work

Hardware-acceleratedNFs.NF tasks have been accelerated using
programmable switch ASICs, FPGAs, or Smart NICs to outperform
CPU-only designs. Examples include offloading load balancers [53]
and network monitoring [5, 35, 56] to switches and IPSec gateway,
load balancer, and other NFs to FPGA-based smart NICs [31, 48].
TEA makes it possible to accelerate a wider range of NFs on pro-
grammable switches and support more operating scenarios by ad-
dressing the memory constraint issue.
Using external memory from switches. Prior work has sug-
gested system architectures that allow switches to utilize external
memory on servers [19, 44]. Such architectures run packet process-
ing logic on both a hardware switch and a software switch on the

servers and use servers’ memory (i.e., accessing lookup tables on
servers’ memory) by forwarding a subset of packets (i.e., offloading
traffic in certain conditions) to the software switch. This involves
CPUs, increasing both average and tail packet processing latencies.
In contrast, TEA purely uses DRAM on servers without involving
CPUs via RDMA while addressing practical challenges in using
multiple servers.
NFV state management. Previous work on state management for
stateful NFs in NFV utilizes the local or remote storage to manage
NF state [33, 41, 61, 66]. For example, statelessNF [41] allows NFs to
leverage a centralized storage to store and load states for NFs. Their
focus is better scaling and failure handling in the NFV context. In
contrast, TEA leverages external DRAM to enable state-heavy NFs
on programmable switches.
Other applications on programmable switches. Recent work
has shown that it can be useful to offload other applications or prim-
itives to programmable switches to enhance their performance. For
example, offloading the sequencer [49], key-value cache [40, 50],
and coordination service [39] improves the performance of dis-
tributed systems, in terms of throughput, scalability, and load bal-
ancing. Such systems also suffer due to switch memory constraints.
TEA-like techniques could help such applications as well.
Accessing remote memory via RDMA. RDMA has been used
in applications such as key-value stores [27, 42, 54], distributed
shared-memory [27], transactional systems [23, 28, 46], and dis-
tributed NVM systems [52, 63]. Our work demonstrates a novel
use of RDMA, which allows a programmable switch to leverage
external DRAM on such servers.

9 Conclusions

While emerging programmable switch ASIC designs make it possi-
ble for moving NFs from commodity servers to switches, the limited
memory on these ASICs has been a significant impediment in their
use for many NFs. To address this issue, we envision a new system
architecture, called TEA (Table Extension Architecture), for top-
of-rack switch ASICs in NFV clusters. TEA provides a performant
virtual table abstraction for NFs on programmable switches so that
they can make use of DRAM on servers connected to the switch in a
cost-efficient and scalable manner. Our evaluation with microbench-
marks and NF implementations shows that TEA can provide NFs
with low and predictable latency and scalable throughput for table
lookups without servers’ CPU involvement.
Ethics: This work does not raise any ethical issues.

Acknowledgments

We would like to thank the anonymous SIGCOMM reviewers and
our shepherd for their insightful comments and constructive feed-
back. This work was supported in part by the CONIX Research
Center, one of six centers in JUMP, a Semiconductor Research Cor-
poration (SRC) program sponsored by DARPA, and by NSF award
1700521. Daehyeok Kim was also supported by the Microsoft Re-
search PhD Fellowship.

101



TEA: Enabling State-Intensive Network Functions on Programmable Switches SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

References

[1] 2010. Data Set for IMC 2010 Data Center Measurement. http://pages.cs.wisc.edu/
~tbenson/IMC10_Data.html.

[2] 2011. 802.1Qbb – Priority-based Flow Control. https://1.ieee802.org/dcb/802-
1qbb/.

[3] 2011. pktgen-dpdk: Traffic generator powered by DPDK. https://git.dpdk.org/
apps/pktgen-dpdk/.

[4] 2015. Intel Xeon Processor E5-2640 v3. https://ark.intel.com/content/www/
us/en/ark/products/83359/intel-xeon-processor-e5-2640-v3-20m-cache-2-60-
ghz.html.

[5] 2018. Advanced Network Telemetry. https://www.barefootnetworks.com/use-
cases/ad-telemetry/.

[6] 2018. Barefoot P4 Studio. https://www.barefootnetworks.com/products/brief-p4-
studio/.

[7] 2018. Barefoot Tofino. https://www.barefootnetworks.com/products/brief-
tofino/.

[8] 2018. BCM88690–10 Tb/s StrataDNX Jericho2 Ethernet Switch Se-
ries. https://www.broadcom.com/products/ethernet-connectivity/switching/
stratadnx/bcm88690.

[9] 2018. Cavium Xpliant Ethernet Switches. https://www.cavium.com/xpliant-
ethernet-switch-product-family.html.

[10] 2018. Perftest package. https://github.com/linux-rdma/perftest.
[11] 2019. Azure VPN Gateway. https://docs.microsoft.com/en-us/azure/vpn-

gateway/vpn-gateway-about-vpngateways.
[12] 2019. Cisco Visual Networking Index. https://www.cisco.com/c/en/us/solutions/

collateral/service-provider/visual-networking-index-vni/white-paper-c11-
738429.html.

[13] 2019. Compare Kemp LoadMaster, F5 Big-IP & Citrix Netscaler.
https://kemptechnologies.com/compare-kemp-f5-big-ip-citrix-netscaler-
hardware-load-balancers/.

[14] 2019. EdgeCore Wedge 100BF-32X. https://www.edge-core.com/productsInfo.
php?cls=1&cls2=5&cls3=181&id=335.

[15] 2019. FastClick. https://github.com/tbarbette/fastclick.
[16] 2019. In-network DDoS Detection. https://www.barefootnetworks.com/use-

cases/in-nw-DDoS-detection/.
[17] 2019. P416 Language Specification. https://p4.org/p4-spec/docs/P4-16-v1.2.0.

html.
[18] 2020. Recommended Network Configuration Examples for RoCE De-

ployment. https://community.mellanox.com/s/article/recommended-network-
configuration-examples-for-roce-deployment.

[19] Mina Tahmasbi Arashloo, Pavel Shirshov, Rohan Gandhi, Guohan Lu, Lihua Yuan,
and Jennifer Rexford. 2018. A Scalable VPN Gateway for Multi-Tenant Cloud
Services. SIGCOMM Comput. Commun. Rev. 48, 1 (April 2018), 49–55.

[20] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network Traffic
Characteristics of Data Centers in the Wild. In ACM IMC (2010).

[21] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable
Errors. Commun. ACM 13, 7 (July 1970), 422–426.

[22] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95.

[23] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen. 2016. Fast
and General Distributed Transactions Using RDMA and HTM. In EuroSys (2016).

[24] Cisco. 2018. Cisco Global Cloud Index: Forecast and Methodology, 2016–2021
White Paper.

[25] Graham Cormode and Marios Hadjieleftheriou. 2008. Finding Frequent Items in
Data Streams. Proc. VLDB Endow. 1, 2 (Aug. 2008), 1530–1541.

[26] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman
Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow,
James Alexander Docauer, Jesse Alpert, Jing Ai, Jon Olson, Kevin DeCabooter,
Marc de Kruijf, Nan Hua, Nathan Lewis, Nikhil Kasinadhuni, Riccardo Crepaldi,
Srinivas Krishnan, Subbaiah Venkata, Yossi Richter, Uday Naik, and Amin Vahdat.
2018. Andromeda: Performance, Isolation, and Velocity at Scale in Cloud Network
Virtualization. In USENIX NSDI (2018).

[27] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and OrionHodson.
2014. FaRM: Fast Remote Memory. In USENIX NSDI (2014).

[28] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. No Compro-
mises: Distributed Transactions with Consistency, Availability, and Performance.
In ACM SOSP (2015).

[29] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. 2015. Maglev: A Fast and Reliable Software Network Load
Balancer. In USENIX NSDI (2015).

[30] Bin Fan, Hyeontaek Lim, David G. Andersen, and Michael Kaminsky. 2011. Small
Cache, Big Effect: Provable Load Balancing for Randomly Partitioned Cluster
Services. In ACM SOCC (2011).

[31] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure
Accelerated Networking: SmartNICs in the Public Cloud. In USENIX NSDI (2018).

[32] Rohan Gandhi, Hongqiang Harry Liu, Y. Charlie Hu, Guohan Lu, Jitendra Padhye,
Lihua Yuan, and Ming Zhang. 2014. Duet: Cloud Scale Load Balancing with
Hardware and Software. In ACM SIGCOMM (2014).

[33] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert Grandl,
Junaid Khalid, Sourav Das, and Aditya Akella. 2014. OpenNF: Enabling Innovation
in Network Function Control. In ACM SIGCOMM (2014).

[34] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,
and Marina Lipshteyn. 2016. RDMA over Commodity Ethernet at Scale. In ACM

SIGCOMM (2016).
[35] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and

Walter Willinger. 2018. Sonata: Query-driven Streaming Network Telemetry. In
ACM SIGCOMM (2018).

[36] J. Heinanen and R. Guerin. 1999. A Two Rate Three Color Marker. RFC 2698. RFC
Editor.

[37] Infiniband Trace Association. 2010. Supplement to InfiniBand architecture spec-
ification volume 1 release 1.2.1 annex A16: RDMA over converged ethernet
(RoCE).

[38] Infiniband Trace Association. 2010. Supplement to InfiniBand architecture spec-
ification volume 1 release 1.2.1 annex A17: RDMA over converged ethernet
(RoCE).

[39] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free Sub-RTT Coordina-
tion. In USENIX NSDI (2018).

[40] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In ACM SOSP (2017).

[41] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. 2017. Stateless
Network Functions: Breaking the Tight Coupling of State and Processing. In
USENIX NSDI (2017).

[42] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using RDMA
Efficiently for Key-value Services. In ACM SIGCOMM (2014).

[43] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. 1997. Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web. In ACM STOC (1997).

[44] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker. 2016.
Cacheflow: Dependency-aware rule-caching for software-defined networks. In
ACM SOSR (2016).

[45] Changhoon Kim, Matthew Caesar, Alexandre Gerber, and Jennifer Rexford. 2009.
Revisiting Route Caching: The World Should Be Flat. In PAM (2009).

[46] Daehyeok Kim, Amirsaman Memaripour, Anirudh Badam, Yibo Zhu,
Hongqiang Harry Liu, Jitu Padhye, Shachar Raindel, Steven Swanson, Vyas
Sekar, and Srinivasan Seshan. 2018. Hyperloop: Group-based NIC-offloading to
Accelerate Replicated Transactions in Multi-tenant Storage Systems. In ACM

SIGCOMM (2018).
[47] Daehyeok Kim, Yibo Zhu, ChanghoonKim, Jeongkeun Lee, and Srinivasan Seshan.

2018. Generic External Memory for Switch Data Planes. In ACM HotNets (2018).
[48] Bojie Li, Kun Tan, Layong Larry Luo, Yanqing Peng, Renqian Luo, Ningyi Xu,

Yongqiang Xiong, Peng Cheng, and Enhong Chen. 2016. Clicknp: Highly flexible
and high performance network processing with reconfigurable hardware. In
ACM SIGCOMM (2016).

[49] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K.
Ports. 2016. Just Say No to Paxos Overhead: Replacing Consensus with Network
Ordering. In USENIX OSDI (2016).

[50] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim, Vladimir
Braverman, Xin Jin, and Ion Stoica. 2019. DistCache: Provable Load Balancing for
Large-Scale Storage Systems with Distributed Caching. In USENIX FAST (2019).

[51] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. 2016. One Sketch to Rule Them All: Rethinking Network Flow
Monitoring with UnivMon. In ACM SIGCOMM (2016).

[52] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an RDMA-enabled
Distributed Persistent Memory File System. In USENIX ATC (2017).

[53] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-
ing ASICs. In ACM SIGCOMM (2017).

[54] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-Sided RDMA
Reads to Build a Fast, CPU-Efficient Key-Value Store. In USENIX ATC (2013).

[55] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David
Zats. 2015. TIMELY: RTT-based Congestion Control for the Datacenter. In ACM

SIGCOMM (2015).

102

http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
https://1.ieee802.org/dcb/802-1qbb/
https://1.ieee802.org/dcb/802-1qbb/
https://git.dpdk.org/apps/pktgen-dpdk/
https://git.dpdk.org/apps/pktgen-dpdk/
https://ark.intel.com/content/www/us/en/ark/products/83359/intel-xeon-processor-e5-2640-v3-20m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/83359/intel-xeon-processor-e5-2640-v3-20m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/83359/intel-xeon-processor-e5-2640-v3-20m-cache-2-60-ghz.html
https://www.barefootnetworks.com/use-cases/ad-telemetry/
https://www.barefootnetworks.com/use-cases/ad-telemetry/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/
https://www.broadcom.com/products/ethernet-connectivity/switching/stratadnx/bcm88690
https://www.broadcom.com/products/ethernet-connectivity/switching/stratadnx/bcm88690
https://www.cavium.com/xpliant-ethernet-switch-product-family.html
https://www.cavium.com/xpliant-ethernet-switch-product-family.html
https://github.com/linux-rdma/perftest
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://kemptechnologies.com/compare-kemp-f5-big-ip-citrix-netscaler-hardware-load-balancers/
https://kemptechnologies.com/compare-kemp-f5-big-ip-citrix-netscaler-hardware-load-balancers/
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335
https://github.com/tbarbette/fastclick
https://www.barefootnetworks.com/use-cases/in-nw-DDoS-detection/
https://www.barefootnetworks.com/use-cases/in-nw-DDoS-detection/
https://p4.org/p4-spec/docs/P4-16-v1.2.0.html
https://p4.org/p4-spec/docs/P4-16-v1.2.0.html
https://community.mellanox.com/s/article/recommended-network-configuration-examples-for-roce-deployment
https://community.mellanox.com/s/article/recommended-network-configuration-examples-for-roce-deployment


SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Daehyeok Kim et al.

[56] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.
Language-Directed Hardware Design for Network Performance Monitoring. In
ACM SIGCOMM (2017).

[57] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob Lev-
erich, David Mazières, Subhasish Mitra, Aravind Narayanan, Guru Parulkar,
Mendel Rosenblum, et al. 2010. The case for RAMClouds: scalable high-
performance storage entirely in DRAM. ACM SIGOPS Operating Systems Review

43, 4 (2010), 92–105.
[58] Rasmus Pagh and Flemming Friche Rodler. 2001. Cuckoo hashing. In European

Symposium on Algorithms (2001).
[59] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Green-

berg, David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu,
Changhoon Kim, and Naveen Karri. 2013. Ananta: Cloud Scale Load Balancing.
In ACM SIGCOMM (2013).

[60] S. Pontarelli, P. Reviriego, and M. Mitzenmacher. 2018. EMOMA: Exact Match in
One Memory Access. IEEE Transactions on Knowledge and Data Engineering 30,
11 (Nov 2018), 2120–2133.

[61] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew Warfield. 2013.
Split/Merge: System Support for Elastic Execution in Virtual Middleboxes. In
USENIX NSDI (2013).

[62] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.
2015. Inside the Social Network’s (Datacenter) Network. In ACM SIGCOMM

(2015).
[63] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. 2017. Distributed Shared Persis-

tent Memory. In ACM SoCC (2017).
[64] David G. Thaler and Chinya V. Ravishankar. 1998. Using Name-based Mappings

to Increase Hit Rates. IEEE/ACM Trans. Netw. 6, 1 (Feb. 1998), 1–14.
[65] Marcel Waldvogel, George Varghese, Jon Turner, and Bernhard Plattner. 1997.

Scalable High Speed IP Routing Lookups. In ACM SIGCOMM (1997).
[66] Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon, Sylvia Ratnasamy, and Scott

Shenker. 2018. Elastic Scaling of Stateful Network Functions. In USENIX NSDI

(2018).
[67] Dong Zhou. 2019. Data Structure Engineering for High Performance Software

Packet Processing. Ph.D. Dissertation. Carnegie Mellon University.

103



TEA: Enabling State-Intensive Network Functions on Programmable Switches SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Note:Appendices are supportingmaterial that has

not been peer-reviewed.

A Psuedocode for TEA-Table Operations

Algorithm 1: Insert(key,value) for TEA-Table (Control
plane).

1 tr ies=0;
2 entry=(key ,value );
3 while tries < MaxTries do

/* Temporaily store the entry in SRAM during insertion */

4 insert entry to SRAM Stash;
5 i=hash(key);
6 if bucket[i] has an empty cell then

7 insert entry to the cell;
8 remove entry from SRAM;
9 copy the cell to the shadow table;

10 return Done;
11 j=(i+1) % n;
12 if bucket[j] has an empty cell then

13 insert entry to the cell;
14 remove entry from SRAM;
15 copy the cell to the shadow table;
16 return Done;
17 select a random cell c from bucket[i] ∪ bucket[j];
18 vict im=c .entry ;
19 insert entry to c ;
20 remove entry from SRAM stash;
21 entry=vict im;
22 tr ies++;

Algorithm 2: Lookup(key) for TEA-Table (Data plane).

1 if key exists in SRAM Stash or Cache then

2 return (SRAM[key],packet );
3 i=hash(key);

/* Resolve memory address of the bucket */

4 addr=resolve_addr(i );
/* Write the packet to the scratchpad */

5 RDMA_Write (addr+KV_LEN, packet, packet_length);
6 length=KV_LEN+packet_length;

/* Read the bucket and packet */

7 (kv_cells, packet) = RDMA_Read (addr, length);

8 Lookup response handler:

9 Upon receive lookup response packet
10 return (kv_cells[key], packet);

B Simplified P4 codes of NF implementations

with TEA

As mentioned in §5, we implement the TEA APIs in P4 and expose
them asmodularized P4 codes [17, §13]. Figure 12 shows an example
program written in P4 using the TEA APIs. Control blocks provided
byTEA, including LookupHandler, ServerResolver, MemResolver,
and LookupRequestor are used in the ingress or egress pipeline,
along with the NF logic. Extending this template, developers can
integrate TEA with their NF implementations. Based on the tem-
plate, we implement NAT, stateful firewall, load balancer, and VPN
gateway, described in §5 and below are the simplified P4 codes of
the NFs.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

#include "tea_core.p4"
control Ingress (headers hdr, metadata meta) {

LookupHandler() lookup_handler;
ServerResolver() server_resolver;
MemResolver() mem_resolver;
apply {

lookup_handler.apply(hdr, meta);
if (meta.lookup_md.found == true) {

[Ingress NF logic]
} else {

server_resolver.apply(meta); 
mem_resolver.apply(meta); 

} 
}

}
control Egress (headers hdr, metadata meta) {

LookupRequestor() lookup_req;
apply {

if (meta.lookup_md.found == true) {
[Egress NF logic]

} else {
lookup_req.apply(hdr, meta);

}
}

}

Figure 12: A template of P4 program using TEA abstrac-

tion. TEA exposes as a library of P4 control functions (e.g.,

lookup_response_handler).
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44

#include "tea_core.p4”
...
control Ingress (headers hdr, metadata meta) {

...
action nat_ext_to_int () {

hdr.ipv4.dstIP = meta.lookup_md.pip;
hdr.ipv4.dstPort = meta.lookup_md.pport;

}
...
table nat {

key = {
meta.lookup_md.dir: exact;

}
actions = {

nat_ext_to_int;
nat_int_to_ext;
drop;

}
}
...
LookupHandler() lookup_handler;
ServerResolver() server_resolver;
MemResolver() mem_resolver;
apply {

...
lookup_handler.apply(hdr, meta);
if (meta.lookup_md.found == true) {

nat.apply();
forward.apply();

} else {
server_resolver.apply(meta); 
mem_resolver.apply(meta); 

} 
...

}
}
control Egress (headers hdr, metadata meta) {

LookupRequestor() lookup_req;
apply {

if (meta.lookup_md.found == false) {
lookup_req.apply(hdr, meta);

} 
}

}

Figure 13: NAT
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#include "tea_core.p4”
...
control Ingress (headers hdr, metadata meta) {

...
LookupHandler() lookup_handler;
ServerResolver() server_resolver;
MemResolver() mem_resolver;
apply {

...
lookup_handler.apply(hdr, meta);
if (is_ext.apply().hit) { //packet from external?

if (meta.lookup_md.found == true) {
forward.apply();

} else {
if (meta.lookup_md.remote_miss == false) {

server_resolver.apply(meta); 
mem_resolver.apply(meta); 

}
} 

}
...

}
}
control Egress (headers hdr, metadata meta) {

LookupRequestor() lookup_req;
apply {

if (meta.lookup_md.found == false &&
meta.lookup_md.remote_miss == false) {
lookup_req.apply(hdr, meta);

} 
}

}

Figure 14: Firewall
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#include "tea_core.p4”
...
control Ingress (headers hdr, metadata meta) {

...
action update_server_addr () {

hdr.ipv4.dstIP = meta.lookup_md.serverIP;
}
...
LookupHandler() lookup_handler;
ServerResolver() server_resolver;
MemResolver() mem_resolver;
apply {

...
lookup_handler.apply(hdr, meta);
if (meta.lookup_md.found == true) {

update_server_addr();
forward.apply();

} else {
server_resolver.apply(meta); 
mem_resolver.apply(meta); 

} 
...

}
}
control Egress (headers hdr, metadata meta) {

LookupRequestor() lookup_req;
apply {

if (meta.lookup_md.found == false) {
lookup_req.apply(hdr, meta);

} 
}

}

Figure 15: Load balancer
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#include "tea_core.p4”
...
control Ingress (headers hdr, metadata meta) {

...
action encap_packet () {

hdr.l3_tunnel.setValid();
hdr.out_ipv4.setValid();
...
hdr.l3_tunnel.id = meta.lookup_md.l3_tun_id;
hdr.out_ipv4.dstIP = meta.lookup_md.serverIP;
...

}
...
LookupHandler() lookup_handler;
ServerResolver() server_resolver;
MemResolver() mem_resolver;
apply {

...
lookup_handler.apply(hdr, meta);
if (is_ext.apply().hit) { //packet from external?

if (meta.lookup_md.found == true) {
encap_packet();
forward.apply();

} else {
server_resolver.apply(meta); 
mem_resolver.apply(meta); 

} 
}
...

}
}
control Egress (headers hdr, metadata meta) {

LookupRequestor() lookup_req;
apply {

if (meta.lookup_md.found == false) {
lookup_req.apply(hdr, meta);

} 
}

}

Figure 16: VPN gateway
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