
SounDroid: Supporting Real-Time Sound
Applications on Commodity Mobile Devices

Hyosu Kim†, SangJeong Lee‡, Wookhyun Han†, Daehyeok Kim†, Insik Shin∗
†∗School of Computing, KAIST, South Korea

‡Frontier CS Lab., Software R&D Center,Samsung Electronics, South Korea
hyosu.kim@kaist.ac.kr, sj94.lee@samsung.com, insik.shin@cs.kaist.ac.kr

Abstract—A variety of advantages from sounds such as
measurement and accessibility introduces a new opportunity for
mobile applications to offer broad types of interesting, valuable
functionalities, supporting a richer user experience. However, in
spite of the growing interests on mobile sound applications, few or
no works have been done in focusing on managing an audio device
effectively. More specifically, their low level of real-time capability
for audio resources makes it challenging to satisfy tight timing
requirements of mobile sound applications, e.g., a high sensing
rate of acoustic sensing applications. To address this problem,
this work presents the SounDroid framework, an audio device
management framework for real-time audio requests from mobile
sound applications. The design of SounDroid is based on the
requirement analysis of audio requests as well as understanding of
audio playback procedure including the audio request scheduling
and dispatching on the Android platform. It then incorporates
both real-time audio request scheduling algorithms, called EDF-V
and AFDS, and dispatching optimization techniques into mobile
platforms, and thus improves the quality-of-service of mobile
sound applications. Our experimental results with a prototype
implementation of SounDroid demonstrate that it is able to en-
hance the scheduling performance for audio requests, compared
to traditional mechanisms (by up to 40% improvement), while
giving a deterministic dispatching latency.

I. INTRODUCTION
Various real-time applications using audio resources have

emerged recently in mobile environments. They not only
simply playback music or sound effects, but also perform many
functions including indoor localization [1], gesture recogni-
tion [2], [3], [4], [5], inter-device distance measurement [6],
[7], [8], and harmonized sound reproduction [9]. Unlike tra-
ditional sound applications, they have quite sophisticated real-
time constraints. For example, motion sensing applications
should emit acoustic signals within about 30ms for acceptable
accuracy. Surround sound play in [9] requires extremely tight
synchronization in timing, i.e., less than 1ms.

Yet, there is a scarcity of research on supporting emerging
mobile sound applications with a focus on handling their real-
time characteristics. While mobile sound applications impose
various timing requirements, many of such requirements are
not properly supported on Android, one of the most popular
mobile platforms. There is a recent work, called RTDroid [10],
designed to enable fixed-priority scheduling for real-time
support on Android. However, the fixed-priority scheduling
does not support well the tight individual timing requirements
imposed by diverse sound applications.

In this paper, we report the development of a novel real-
time audio device management framework, named SounDroid,
for Android sound applications. We first conduct a survey on
how applications make use of an audio device (i.e., a loud-
speaker) to deliver their own services. We then analyze timing
requirements associated with the quality-of-service (QoS) that

*A corresponding author

they aim to provide. Key aspects of such timing requirements
include the followings: low and bounded playback latency,
accurate on-time playbacks, and high sensing rates. With
a proper understanding of the Android audio management
system, we identify several sources that make it difficult to
support such various timing requirements on Android.

The current audio device management system incurs a non-
negligible playback latency even in an unpredictable manner.
Audio device management typically consists of two steps: (1)
scheduling that selects one of the audio requests waiting in
the ready queue and (2) dispatching that gives control of the
audio device to the selected request. Each step faces several
challenges to be addressed as follows.
• Audio request scheduling. Mobile sound applications im-

pose tight timing constraints from various viewpoints. One
is from a high degree of predictability. For example, some
applications require to playback sounds punctually at the
appointed time (with an error of a few milliseconds) for
various purposes, including synchronized playback between
multiple devices. Another is from a performance viewpoint.
Sensing applications may also require low playback latency
(or response time) to have high sensing rates and/or demand
tight deadlines to obtain smaller jitter bounds for improved
sensing performance. It becomes even more challenging to
meet such stringent timing requirements when applications
demand to use an audio device in a non-preemptive fashion.
• Unpredictable and large dispatching latency. Even though

Android has tried to optimize its audio playback procedure,
we observe that there still exists unexpected long latency in
the playback, especially during the audio request dispatching.
The dispatching latency is often so large (i.e., a few to a
couple of hundreds of milliseconds) that, even for properly
scheduled requests, the platform could not emit the sound on
time. More importantly, the latency is almost unpredictable.
Thus, it is very difficult to design an efficient scheduling
mechanism without optimizing the latency.

From the above two sources of challenges, SounDroid
develops two main solutions accordingly. First, for the schedul-
ing challenges, we design a novel real-time audio scheduling
framework that is based on our new modeling of audio
playback requests for mobile sound applications. The model
is able to specify various requirements of audio requests,
such as atomicity, on-time playback, and acoustic frequency
requirements. In order to support the tight timing constraints
of various audio requests under non-preemptive scheduling, we
propose a new scheduling algorithm, Earliest Deadline First
with Virtual-scheduling (EDF-V), that is an extension of EDF-
based algorithms [11], [12] with a more elaborated support of
the distinctive timing constraints of audio requests. Leveraging
the characteristic of audio requests in a frequency domain, we
also propose Acoustic Frequency Division Scheduling (AFDS).

Second, to deal with the audio request dispatching latency,

we optimize the overall audio playback procedure significantly
on Android. Especially, we understand and tackle the sources
of unpredictable long dispatching latency, which have not been
explored sufficiently so far for tight real-time support.

We have implemented a prototype of SounDroid as an
extension to Android for supporting a variety of commod-
ity mobile devices. We evaluate the real-time capability of
SounDroid for mobile sound applications using both simulation
and experiments with Android devices. Our evaluation results
show that, compared to existing scheduling algorithms and
mobile platforms, SounDroid offers a much better real-time
support for sound applications with the low and stabilized
dispatching latency as well as response time. We also mea-
sure how SounDroid affects performance of real-world mobile
sound applications such as the surround sound reproduction
and sensing applications. As a result, for each application,
SounDroid allows a high degree of QoS by satisfying its
requirements (1ms of synchronization accuracy for immersive
sounds and 33Hz of measurement rate for sensing), even when
multiple sound applications run on SounDroid simultaneously.
Contribution. The main contribution of this paper can be
summarized as follows.

• To the best of our knowledge, this work makes the first
attempt to explore the real-time issues of currently-emerging
mobile sound applications. It then designs a novel mobile
platform architecture, SounDroid, which manages an audio
device with a high degree of real-time capability, while
addressing challenges on the audio playback procedure.
• It introduces the EDF-V and AFDS scheduling algorithms

and dispatching latency optimization techniques for real-
time supports on an audio device. Our experimental results
show that EDF-V outperforms the traditional schemes (i.e,
CEDF [12]) in terms of schedulability with a marginal
increase on average in computation overhead. SounDroid also
provides the much more deterministic dispatching latency
with an acceptable amount of the worst-case latency.
• It demonstrates the effectiveness of SounDroid with real-

world mobile sound applications. In contrast to the poor ex-
perience on Android, our experiment with SounDroid shows
a significant improvement in the QoS of applications. To this
end, we expect that with SounDroid, many interesting mobile
sound applications could be easily developed.

II. MOBILE SOUND APPLICATIONS
Building upon the useful features of sounds in mobile

environments, a variety of interesting services has increasingly
emerged. We categorize them as follows:

• Localization. Sounds can be used to identify the location of
objects. Multiple mobile devices emit acoustic signals in turn,
and calculate the distance to each source device using the time
of arrival. With this information, the location can be derived
by applying computational geometry such as triangulation.
There are some representative works such as BeepBeep [6],
GuoGuo [1], Phone-to-Phone 3D localization [8].
• Gesture Recognition. We can recognize the gesture of users

with sounds. A device plays an acoustic signal and records
it back, measuring any changes in the signal, e.g. Doppler
Effect, during the acoustic transmission. This approach makes
use of machine learning techniques to train possible acoustic
changes for gestures, and recognizes them based on the train-
ing set. It enables in-air gesture recognition without any spe-
cialized devices. SoundWave [2], DopLink [3], AirLink [4],

Spartacus [5] are representative works in this category.
• Mobile Motion Game. Acoustic distance measurement tech-

nology enables a new kind of mobile game, i.e., a mobile
peer-to-peer motion game. For example, SwordFight [7]
makes each of two mobile devices become a virtual sword.
Users can play a fencing game which determines the success
of attacks based on the distance between two virtual swords.
• Audio Device Collaboration. There are a couple of mobile

applications that coordinate multiple devices to produce high-
quality harmonized sound reproduction. For example, in Mo-
bile Maestro [9], six mobile devices play the different audio
channels of 5.1 ch surround sound, enabling immersive sound
experience everywhere. More simply, multiple devices can
play the same music much louder, known as GroupPlay [13].

Basically, the proliferation of mobile sound applications is
based on the interesting features of sounds: 1) sound propaga-
tion can help to capture in-air and/or device-to-device changes,
2) sounds in the inaudible frequency range makes unnoticeable
sensing possible, and 3) most mobile devices, even low cost
devices, include speakers and microphones. We expect that a
more number of mobile sound applications will emerge with
the advance of audio device performance and form factors.
We will thus have more applications running simultaneously,
resulting in more contention on audio resources. Therefore, it
is imperative to provide a system solution that optimizes the
audio device management in mobile platforms.

A. Requirement Analysis
From the above mobile sound applications, we have iden-

tified three major requirements of audio playback requests.
R1: Various stringent timing constraints. Many mobile
sound applications impose diverse timing requirements related
to the use of an audio device. Such requirements can be broadly
characterized as follows.

• Bounded latency. Some sounds should be played no later
than a specific time delay limit. For example, users expect
(audible) feedback for their inputs within 100ms for their QoS
satisfaction [14]. Thus, user-interactive applications, such as
mobile games, request that the sound playback latency should
be less than 100ms.
• On-time playback. Some sounds should be played as closely

as possible to a specific time point. For instance, in Mobile
Maestro [9], multiple mobile devices are arranged to play
sounds at the same time for immersive sound reproduction.
According to human auditory perception [15], such multi-
device audio collaboration requires tight timing synchroniza-
tion (i.e., 1ms) for accurate sound reproduction. If not, an
auditory image would be localized in a wrong direction.
This requires each mobile device to play sounds at its own
designated time point with an error range of ±0.5ms.
• Tight and regular sensing intervals. Sensing applications
monitor dynamic surrounding environments continuously by
emitting acoustic signals periodically. In this case, the sensing
rate has a critical impact on QoS. For example, as the
sensing rate of mobile motion games increases, users might
experience much better game quality due to the increased
sensing accuracy. Typical sensing rates for mobile motion
games range from 10Hz to 30Hz [7], [16].

R2: Atomic playback. We observe that the sounds of mobile
sound applications should not be interrupted in the middle of
emission. For example, users might feel very annoyed if the

(a) Movie (Les Miserables). (b) Phone ring. (c) Acoustic signal used in Mobile Maestro [9].

Fig. 1: The spectrogram of different types of audio streams. It presents the spectrum of frequencies as they vary with time. The
brighter the spectrum is, the louder the sound is at the corresponding frequency.

S4: Buffered

Playback
S2:

Stream

Processing

Frame Buffer

Android Framework Audio Device

S1: Audio

Request

Scheduling

Request

Queue

Mobile

Sound

Apps.

S3:Audio

Device

Activation

Fig. 2: Audio Playback Procedures on Android.

5.1 channel surround sound playback is interfered by sensing
audio requests. Also, even between sensing applications, signal
interference might cause the difficulty in signal detection and
finally result in an unacceptable decrease in sensing accuracy.
R3: Use of different frequency ranges. We also observe
that mobile sound applications make use of different acoustic
frequency ranges. Figure 1 shows the spectrogram of three rep-
resentative audio streams. As shown in the figure, conventional
sounds of music or phone ring utilize the audible frequency
range, i.e., between 0 and 18k/20kHz. In contrast, acoustic
signals used for sensing applications are usually modulated in
the inaudible frequency range (above 18kHz). Moreover, indi-
vidual applications presume that they can use their frequency
ranges exclusively. For example, user-interactive applications
aim to provide clear sounds for quality of sound. Similarly,
sensing applications request that signals do not overlap with
each other for high sensing accuracy.

III. SOUNDROID FRAMEWORK
This section presents the overview of SounDroid that

supports real-time characteristics of various audio playback
requests made by multiple mobile sound applications. To
design the framework carefully, we now investigate the audio
playback procedure on Android, then identify major technical
challenges, and discuss the overall architecture of SounDroid.

A. Understanding Playback Procedure
Audio playback requests undergo the following four steps

to produce their sound. As shown in Figure 2, the first two
steps belong to the service layer in Android, while the later
two are related to the audio device hardware.
• S1: Audio request scheduling. The audio requests are

scheduled to utilize the audio resource according to a schedul-
ing policy. For example, Android schedules requests accord-
ing to the LIFO (Last-In-First-Out) policy to handle the most
recent audio request first.
• S2: Stream processing. The audio source of the requests

is decoded and re-sampled to the raw data playable by the
audio device.
• S3: Audio device activation. Before the raw data is given

to the audio device, the mobile platform checks the status of

the device. If it is inactive, the platform delays the process
until it becomes active.
• S4: Buffered playback. The raw data is split into several
chunks, called frame, which is a basic unit for interaction
with an audio device. Then, each frame is inserted into the
frame buffer, and the audio device plays it frame-by-frame
sequentially.

Since this internal procedure in Android does not properly
handle timing and frequency constraints of real-time audio
requests, it cannot satisfy the QoS requirement of real-time
mobile sound applications. In the next subsection, we fig-
ure out the two major technical challenges in audio request
scheduling and dispatching.

B. Challenges in Audio Request Scheduling and Dispatching
Audio request scheduling. All the three R1, R2, and R3
requirements are not yet supported on the current Android plat-
form and its variation with real-time support, RTDroid [10].
The R1 requirement indicates that many audio requests are
very time-sensitive. They can require a high precision of
hundreds of microseconds in accessing an audio device. In
order to meet such a requirement, it needs to take deadlines
explicitly into account when making scheduling decisions over
an audio device. However, Android and RTDroid employ LIFO
and fixed-priority scheduling, respectively, without considering
deadlines. In addition, the R2 and R3 requirements suggest that
an audio device should be used in a non-preemptive manner for
some audio requests and that some audio requests can share the
audio device depending on their frequency ranges. However,
Android and RTDroid commonly have preemptive scheduling
over an audio device and do not care about the frequency range
of audio requests. Thus, it entails to design a non-preemptive,
deadline- and frequency-aware scheduling scheme that takes
into account tight timing constraints.
Audio request dispatching. According to our preliminary
experiments on Android, the audio request dispatching steps
S2-S4 incur unpredictable, non-negligible audio playback la-
tency, ranging from 8ms to 150ms. We seek to deal with
such dispatching latency for the following reasons. First, the
long dispatching latency compromises the QoS significantly.
For example, the latency longer than 100ms will decrease
users satisfaction seriously. It will also lead to unacceptable
accuracy for acoustic sensing. Second, the dispatching latency
is unpredictable because it heavily depends on the status
of the audio device and/or the frame buffer. This makes it
complicated to schedule audio requests in a way that they
emit audio signals promptly at their designated time. Third,
the latency directly impacts the sensing rate of mobile acoustic
sensing applications. The smaller latency we have, the higher
sensing rate and the better QoS we can achieve.

Mobile Sound App. . MSA …

Application

Audio Request Scheduler

Inaudible Request Handler Audible Request Handler

Frame Maker

Audio Request Dispatcher

Audio Device (e.g., loudspeaker)

Frame Buffer

SounDroid

H/W

Fig. 3: Overall architecture of the SounDroid framework.

Unsurprisingly, Android also makes an effort to address
the dispatching latency issue. It proposes a solution that
pre-processes audio streams to reduce the stream processing
latency in Step S2. However, it has rarely considered the
latency occurring in the steps S3 and S4. Therefore, we need
to develop a systematic solution for the minimization and
regularization of the dispatching latency in SounDroid.

C. SounDroid Architecture
Figure 3 illustrates the overall architecture of SounDroid

including three core components for addressing the challenges
on existing platforms. Each mobile sound application first
requests an audio playback with its own frequency and timing
requirements. Audio Request Scheduler then schedules the
audio requests in accordance with their constraints, specifically
a deadline and the latest possible playback start time. The
scheduled request is handled in its corresponding thread, and
delivered to Frame Maker in a unit of frame1. Note that Audio
Request Scheduler can schedule multiple requests at the same
time through the frequency-based multi-resource scheduling.
Once Frame Maker receives frames, it merges them into a
single frame if it is necessary, i.e., there are multiple scheduled
requests. Finally, the merged frame is inserted to a device
buffer through Audio Request Dispatcher. At this time, to
mitigate the dispatching latency, Audio Request Dispatcher
applies several optimization techniques such as the early audio
device activation and latency stabilization.

In later two sections, we investigate more details of each
technique for enabling a high degree of real-time capability on
SounDroid. We first observe how both Audio Request Sched-
uler and Frame Maker support diverse real-time characteristics
of mobile sound applications (Section IV). Then, we explain
our optimization schemes for the audio request dispatching
latency, applied to Audio Request Dispatcher (Section V).

IV. REAL-TIME AUDIO SCHEDULING
As discussed in Section III-B, there are several challenges

when designing scheduling strategies for audio requests. First,
it needs to support the various types of tight timing constraints.
Second, an audio device should be utilized in a non-preemptive
manner. Third, it needs to recognize the frequency range
that each request mostly use to efficiently schedule multiple
requests. In this section, to address such challenges, we first
model audio requests of mobile sound applications reflecting

1We assume that all the requests are pre-processed into the raw format of
samples

their timing and frequency requirements. Based on the request
model, we introduce EDF with Virtual-scheduling (EDF-V)
mechanism for satisfying the timing requirements of audio
requests, and Acoustic Frequency Division Scheduling (AFDS)
for frequency-based efficient scheduling.

A. Audio Request Modeling
Mobile sound applications utilize an audio device with

multiple audio requests, and each audio request Ai can be
modeled as follows:

Ai = (Fi, Si, Ci, Di, Ti).

Each Ai requests an exclusive and non-preemptive use of fre-
quency Fi, where Fi is either audible or inaudible. The
request can be regularly repeated with a minimum separation
delay Ti, and each request has the earliest possible playback
start time Si, a constrained relative deadline Di ≤ Ti (i.e., an
absolute deadline di = Si+Di), and a playback duration Ci. A
request Ai is periodic if 0 < Ti <∞, or one-time otherwise.
It is worthy to note that Si can be used to specify an on-
time playback request. For example, when a sound application,
at time t0, wants to emit an acoustic signal punctually at a
targeted time instant t1 with a marginal error ε, it generates a
request Ai with Si = t1 and Di = Ci + ε. Let Ri denote the
time when a request Ai is made, where Ri ≤ Si. Then, Ai

is said to be prearranged if Ri < Si or unplanned otherwise.
In general, on-time playback requests are typically arranged
some time before its targeted playback time, and the scheduling
information of each instance of periodic requests can be also
given in advance. On the contrary, audible feedback to user
inputs are specified as unplanned requests.

SounDroid introduces new playback APIs in order to
manage a life cycle of audio requests. First, mobile sound
applications request an audio playback by using our proposed
API, called SounDroidPlay(), with their time and frequency re-
quirements. Audio Request Scheduler then stores the requests
on Audio Request Queue, and schedules them based on their
requirements. When a request completes its playback, it is re-
moved from the queue, except for periodic requests. We denote
the j-th instance of each periodic request Ai as Aj

i , where
j ≥ 0. If Aj

i ’s playback is finished at time t, Audio Request
Scheduler just updates Si such that Sj+1

i = max(Sj
i + Ti, t).

SounDroid also supports other types of playback operations
including stop, pause, and resume. For example, if Ai is
stopped, Audio Request Scheduler just removes Ai from the
request queue. Paused requests are stored in Pending Queue
having their remaining playback duration, and returned back
to Audio Request Queue when the resume API is called.

B. EDF-V Scheduling Algorithm
In order to satisfy the timing requirements of individual

audio requests, we design a new scheduling algorithm, named
EDF-V (Earliest Deadline First with Virtual-scheduling). Our
design is based on two observations. One is that audio re-
quests basically make atomic use of an audio device, and the
other is that they often impose strict timing requirements in
terms of tight deadlines. Thereby, we consider non-preemptive
deadline-based scheduling.
Traditional non-preemptive EDF-based scheduling. The
non-preemptive EDF (NP-EDF) algorithm is known to be
an optimal work-conserving non-preemptive scheduler [11].
However, the scheduling performance of NP-EDF is limited
due to its work-conserving nature, because adding idle time can

Algorithm 1 Postpone condition of EDF-V
Input: Audio request set A, the current scheduling point t
Output: A postpone decision

1: P ← all the playable audio requests at time t in A
2: AD ← the earliest deadline request in P
3: if isPostponedOnCEDF(AD , A) then
4: return Postpone
5: end if

/* Start the virtual estimation of given audio request sets */
6: while A is not empty do
7: P ← all the playable audio requests at time t in A
8: AD ← the earliest deadline request in P
9: if SD > t then

10: return Do not postpone
11: else
12: if isPostponedOnCEDF(AD , A) then
13: /* Virtually delay start time of AD */
14: t ← max(t, the earliest Si in A)
15: else
16: if t+ CD > DD then
17: return Postpone
18: else
19: A ← A \ AD

20: t ← t+ CD

21: end if
22: end if
23: end if
24: end while
25: return Do not postpone

A1

0 10 20 50

A2 A3

30 40

A3 misses d3

(a) CEDF schedule

A1

0 10 20 50

A2 A3

30 40

A1 is postponed

(b) EDF-V schedule

Fig. 4: Scheduling example with three audio requests:
each request is specified in terms of Ai(Si, Ci, di);
A1(0, 15, 100), A2(10, 10, 30), and A3(20, 7, 30).

enhance schedulability under non-preemptive scheduling. An
extension of NP-EDF, called Clairvoyant EDF (CEDF) [12],
was introduced that adds idle time based on future scheduling
information. The only difference between NP-EDF and CEDF
is explained as follows. At time t, NP-EDF always schedule
the request Ai with the earliest deadline as long as Si ≤ t.
However, scheduling Ai at t may force another request to
miss a deadline, and CEDF aims to avoid such a situation.
Let Smax

i denote the latest possible start time of Ai such that
Smax
i = di−Ci. Then, at time t, CEDF delays scheduling Ai

if the following condition holds:

t+ Ci > min
Aj∈A\Ai

Smax
j , (1)

where A is a set of unscheduled requests.
With such a simple strategy of delaying Ai, CEDF is able

to dominate NP-EDF in schedulability. However, CEDF has
a room for further improvement. While CEDF considers just

the direct influence of scheduling Ai on other requests, it may
offer the best decision for the next request to be scheduled, but
not for other remaining requests. Figure 4(a) shows an example
for illustration. In Figure 4(a), CEDF schedules A1 at time 0
since it does not violate the above condition Eq. (1). However,
it leads to the deadline miss of A3 as shown in the figure.
This is because CEDF does not consider a cascade effect of
scheduling A1 on other remaining requests.

Under real-time audio request scheduling, such a cascade
effect should be considered for improved schedulability due
to the following reasons. First, many audio requests often
come with extremely tight deadlines. For example, on-time
playback requests for high-quality sound reproduction may
impose a relative deadline of (Ci + 1) ms. Second, acoustic
sensing applications typically demand higher sensing rates and
smaller delay jitters, and such demands will be specified as
shorter periods and smaller relative deadlines. In this case, the
cascade effect of scheduling one request on others would be
more critical to meeting tight timing requirements.
EDF-V scheduling. So as to overcome the limitation of CEDF,
we develop a new algorithm EDF-V that generalizes CEDF
in the sense that EDF-V makes decision of postponing Ai by
checking not only its direct influence but also its cascade effect
on the other requests. Such checking can be viewed as virtual
scheduling of not only a single request but also a chain of
other requests under CEDF.

Algorithm 1 shows the elaborated postpone condition of
EDF-V. At every scheduling point t, if AD does not meet the
postpone condition of CEDF, EDF-V checks whether deadline
miss will occur or not by the cascade effect of AD through
iterative virtual scheduling (lines 6-24). In other words, EDF-V
virtually schedules the given request set A when AD is de-
termined to be scheduled right away without being postponed.
In the virtual scheduling, the postpone condition of Eq. (1)
is used to determine to virtually postpone a request or not
(lines 12-14). When a deadline miss occurs during the virtual
scheduling, it decides to postpone the request AD (lines 16-
17). For example, in the previous example, at time 0, CEDF
schedules A1 to playback without postponing (see Figure 4(a)).
EDF-V, instead, virtually schedules remaining requests before
dispatching A1. It then postpones the playback of A1 since
a deadline miss of A3 is detected, and finally meets timing
constraints of all the requests (see Figure 4(b)). Note that,
during this pre-evaluation, each periodic request is transformed
into multiple one-time requests.

Since EDF-V follows NP-EDF mechanism and uses the
postpone condition of CEDF during the virtual scheduling,
it dominates NP-EDF and CEDF in terms of schedulability2.
Yet, its dominance comes from iterative virtual scheduling.
Thus, for each scheduling decision, EDF-V has the running
time complexity of O(n log n), where n is the number of one-
time requests including instances of periodic requests. This is
because it virtually schedules all the remaining requests based
on CEDF which is known to have the complexity O(log n)
at each scheduling point. To minimize such overhead, EDF-V
first terminates the iteration when it encounters an idle time
since it means that a set of requests under virtual scheduling
and a set of remaining requests are mutually exclusive and
do not affect each other (lines 9-10 in Algorithm 1). EDF-V

2EDF-V is not guaranteed to dominate NP-EDF and CEDF in terms of
a deadline miss rate because the current postpone decision may cause more
deadline misses in the future.

also bounds a number of one-time requests generated from
a single periodic request, denoted NP . It may decrease the
scheduling performance of EDF-V due to the limited future
scheduling information, but provide a better support for our
on-line scheduling with the reasonable scheduling complexity.

C. Acoustic Frequency Division Scheduling (AFDS)
As mentioned in Section II-A, mobile sound applications

utilize a certain acoustic frequency range depending on its
audio source, enabling us to adopt a binary frequency require-
ment, audible and inaudible, to our model. Leveraging
this constraint, we introduce Acoustic Frequency Division
Scheduling (AFDS) to improve scheduling rate by allowing
multiplexing of audible and inaudible audio requests in a
frequency domain. To enable AFDS, SounDroid maintains two
scheduling queues, one for audible requests and the other for
inaudible ones. Audio Request Scheduler assigns each audio
request to one of two queues. However, even though we can
disjointly schedule audio requests based on their frequency
use, in the current Android, it is impossible to support playback
two different audio frames simultaneously since a single audio
request only can access to an audio device at a time.

SounDroid addresses this limitation by combining two
audio frames into a single one so that two audio requests can
access the audio device i) concurrently in a time domain and
ii) separately in a frequency domain. To do this, SounDroid
introduces Frame Maker which takes two frames from each
audio frame queue and merges them into a single frame.
Note that although our model defines an audio request as
either audible or inaudible, some audible source such as a
music played with various musical instruments can also use
an inaudible frequency range, which can cause interference
between two frames in a frequency domain. In order to
guarantee that two audio frames uses the exactly isolated range
of frequencies, Frame Maker first filters two frames based on
FA, an upper threshold on a human hearing range3, with the
complexity O(k log k), where k is a size of the frame. More
specifically, it applies a low-pass filter for audible frames and
a high-pass filter for inaudible frames with FA as a cut-
off frequency. After combining two filtered frames without
overlapped frequency ranges, Frame Maker passes it to Audio
Request Dispatcher, and then two audio requests can be played
on the audio device at the same time.

V. AUDIO REQUEST DISPATCHING OPTIMIZATION
In addition to the audio request scheduling, another im-

portant challenge for the QoS satisfaction of mobile sound
applications is to minimize and stabilize latency during the
audio request dispatching. In this section, we first explore the
major reasons for such latency, and describe our optimization
techniques to address them.

A. Latency from Dispatching Audio Requests
As discussed in Section III-B, Android still incurs a huge

amount of playback latency, especially while dispatching an
audio request, which mainly consists of Audio Device Activa-
tion and Buffered Playback.

• Audio device activation latency. Traditionally, mobile plat-
forms manage its audio device efficiently in terms of energy,
but not in terms of latency. For this reason, they initially
let the audio device stay in the inactive state. When an audio

3In this paper, we configure FA as 18kHz, the maximum audible frequency
of common adults.

request is newly dispatched, the audio device first needs to be
awake from the inactive state, and then starts to playback the
requested audio sound. Once all the requested playbacks are
completed, it goes into the silence state. If the silence lasts for
a while (e.g., 3 seconds), mobile platforms expect that there
will be no additional requests and inactivates an audio device
for reducing unnecessary energy consumption. However, with
this management strategy, since the audio device is activated
in an on-demand manner, the requested audio playback is
delayed until all the activation procedures finish, experiencing
a large and unpredictable amount of latency (up to 100-150
milliseconds on the Nexus 4 device).
• Buffering latency. Even after the audio device is activated,

there is another latency that comes from buffered playbacks.
Mobile platforms use a buffer to deliver frames of audio
requests to the audio device without audio glitches. However,
this buffering mechanism produces an inevitable latency.
Since there exist multiple frames in the frame buffer, the
playback of newly requested frames can be started only after
all previously inserted frames and the currently played frame
are emitted. Hence, this buffering mechanism introduces
latency on playbacks up to frame length × (buffer
size + 1). In addition, latency occurs even when the buffer
is empty due to the state transition of the audio device from
silence to playing state.

B. Optimizing Audio Request Dispatching Latency
Above latency is not negligible for real-time mobile sound

applications that have critical timing constraints. To address
above problems, SounDroid introduces the simple, yet effective
optimization techniques to alleviate the impact of audio request
dispatching latency.

First, SounDroid hides the activation overhead by preparing
an audio device in advance. Toward this, SounDroid offers a
special permission, called LOW_PLAYBACK_LATENCY, and
activates an audio device if there is a running application
with the permission. Thus, SounDroid supports zero acti-
vation latency to mobile sound applications which declare
the permission in their configuration files (e.g., the Manifest
file in Android applications). This pre-activation scheme may
increase energy consumption compared to the on-demand one.
However, since most mobile sound applications continuously
use the audio device during its execution, we expect that the
additional energy consumption would not be too large.

SounDroid also compensates the buffering latency through
the adaptive audio request scheduling with the buffering la-
tency stabilization. Since the buffering latency unexpectedly
changes according to the number of buffered frames, it is dif-
ficult to determine the exact amount of delay. Thus, SounDroid
makes the latency stable by writing zeroed data to the buffer.
It enforces loudspeakers to emit a mute sound as well as
keeps the buffer full. In other words, it always incurs the
same amount of latency, i.e., the worst-case buffering latency,
denoted as LWC

B (in our implementation, LWC
B = 20ms). Au-

dio Request Scheduler then compensates the stabilized latency
by re-configuring scheduling parameters of each audio request
Ai. It adjusts the earliest possible start time Si and the latest
start time Smax

i to max (Ri, Si − LWC
B) and di−Ci−LWC

B ,
respectively. From the application’s view point, SounDroid
enables an audio request to emerge from a loudspeaker without
the buffering latency by scheduling it at most LWC

B earlier than
the originally requested start time.

The benefits of latency compensation can differ depending

0

0.5

1

10% 20% 30% 40% 50%

N
o
rm

a
liz

e
d

s
c
h
e
d
u
la

b
ili

ty
 (

%
)

The ratio of tight deadline requests

EDF-V CEDF NP-EDF

Fig. 5: Scheduling performance under different tight deadline
request ratio (normalized to EDF-V).

on the type of audio requests. It can be much beneficial to
prearranged audio requests which their scheduling information
is already known, i.e., Ri < Si. For example, with this
compensation mechanism, we can guarantee that SounDroid
always satisfies the tight deadline of prearranged requests for
high-quality sound reproduction (e.g., Di = Ci + 1ms) by
avoiding an unexpected buffering latency. Unplanned audio
requests, on the other hand, cannot get any advantage from the
compensation mechanism since these requests are scheduled
as soon as they are released, i.e., Ri = Si. In addition,
their response time may even get worse due to the latency
stabilization which always leads the worst-case latency LWC

B .
However, in Section II-A, we study that such kinds of audio
requests require a loose timing constraints (e.g., a latency of up
to 100 milliseconds for acoustic feedback). Thus, SounDroid
improves the system-level performance through the adaptive
audio request scheduling with the latency stabilization for
prearranged audio requests, while offering acceptable time
delays to unplanned audio requests.

VI. EVALUATION
In this section, we evaluate the capability of SounDroid to

support the QoS requirements of mobile sound applications
with following metrics using simulation and our prototype
implementation:

• Scheduling performance: How well does SounDroid support
various requirements of audio requests with proposed EDF-V
and AFDS?
• Request Dispatching latency: How does SounDroid optimize

the audio request dispatching latency?
• QoS satisfaction: Do mobile sound applications running on
SounDroid work in practice?

A. Simulation
We use simulation to evaluate the scheduling performance

of proposed EDF-V algorithm with sets of various audio
requests in comparison to CEDF and NP-EDF. We measured
how scheduling performance of three algorithms changes as
the possibility of the cascade effect increases.
Simulation methodology. Our simulation was conducted with
various sets of randomly generated audio requests which have
realistic acoustic requirements. We assumed that all requests
use inaudible frequency range, and they are one-time requests.
It is worth to note that a periodic request can be converted to a
number of one-time requests. Each request Ai gets randomly
generated start time, playback duration, and deadline such
that Si ∈ [0, 3000], Ci ∈ [10, 40], and Di ∈ [Ci+100,
Ci+1000], and each parameter is uniformly chosen within
given intervals. Some requests have tight deadline to model
on-time audio requests and high rate sensing requests. Tight
deadline parameter is randomly decided in [Ci+1, Ci+30]. We

generated 100,000 sets of audio requests with the ratio of tight
deadline requests ranging from 10% to 50%, and each set has
50 requests.
Simulation results. Figure 5 plots the scheduling performance
of three algorithms, EDF-V, CEDF, and NP-EDF. The x-axis
represents the ratio of tight deadline requests on the request
sets, and the y-axis represents the number of schedulable
request sets relative to EDF-V. The figure shows a widening
performance gap between EDF-V and others as the ratio of
tight deadline requests increases. CEDF can schedule 90% of
request sets those EDF-V can schedule when there are 10% of
tight deadline requests. However, the performance of CEDF is
only about 60% of that of EDF-V when the portion of tight
deadline requests is 50%. In other words, EDF-V can have
a lot of benefit on scheduling performance when there are
many high rate sensing requests and on-time requests which
can frequently cause the cascade effect. The performance of
NP-EDF is the worst among the three scheduling algorithms
with loss of up to 93% compared to EDF-V.

During the simulation, we also measured the number of
iteration on virtual scheduling on EDF-V. On average, the
number of iterations is about 6 (28 in the worst-case), which
translates to 6 times longer running time than CEDF. However,
in practice, the additional computation overhead of EDF-V can
be ignored. In our environment (with a 1.5GHz of processor
speed), it shows just 2.5µs of running time on average with a
1.4µs of standard deviation.

B. Experiment with Android device
Experiment methodology. We have implemented a prototype
of SounDroid as an extension to Android 4.4.1 (Kitkat). We
conducted experiments with Nexus 4 Android smartphone.
During all the experiments, we configured two acoustic pa-
rameters, a frame length and a buffer size, as 10ms and 1,
respectively, setting the worst-case buffering latency LWC

B to
20ms. In addition, for the EDF-V scheduling algorithm, we
set NP , a number of one-time requests transformed from
a single periodic request, as 10. For each evaluation, we
used a different set of custom mobile sound applications,
each of which requests an audio playback according to given
requirements. Especially, for measuring QoS satisfaction of
real-world applications running on SounDroid, we made use
of the audio collaboration application and custom sensing
applications, and evaluated their performance in terms of the
synchronization accuracy and sensing accuracy, respectively.

1) Impact of Audio Request Dispatching Optimization: We
conducted an experiment for observing how well SounDroid
optimizes the audio request dispatching latency. Toward this,
we arbitrarily generated 50 audio request sets consist of one-
time inaudible requests, and scheduled each set on both An-
droid and SounDroid. We then measured how much dispatching
latency each audio request Ai experiences in terms of the
difference between an actual playback start time and the
earliest possible start time Si. It is noteworthy that a latency
driven by the interference among audio requests was discarded
from this result.
Audio device activation latency. Figure 6 presents the mea-
sured activation latency over 50 trials. On Android, an audio
request experiences a high degree of activation delay, varying
from 102.9ms to 158.9ms, which is close to, or even exceeds
a common acceptable user response time of 100ms [14]. In
contrast, SounDroid provides much more responsiveness with
zero latency, since it hides the activation overhead through the

0

50

100

150

200

1 11 21 31 41

A
u

d
io

 d
e
v
ic

e

a
c
ti
v
a
ti
o
n
 l
a
te

n
c
y

(m
s
)

The number of trials

Android SounDroid

Fig. 6: Audio device activation latency on both platforms.

0%

50%

100%

0 5 10 15 20 25

C
u
m

u
la

ti
v
e

d
is

tr
ib

u
ti
o
n

Buffering latency (ms)

Android (when buffer has frames) Android (when buffer is empty)

SounDroid

Fig. 7: Distributions of buffering latency on both platforms.

pre-activation of an audio device.
Buffering latency. As presented in Figure 7, the buffering
latency on Android is differently distributed according to the
buffer status. When the buffer is empty, an audio request is
delayed by from 8ms to 9.89ms due to the state transition
overhead. The latency changes more unexpectedly with the
existence of buffered frames, increasing up to 20ms. Such
buffering latency can have a negative effect on the QoS of
sensing applications. For example, its unpredictability makes
the sensing jitter grow, leading a decrease of the sensing
accuracy.

On the other hand, SounDroid achieves to provide 20ms of
much predictable buffering latency. This deterministic delay
enables a prearranged request Ai such as a sensing request to
be played at Si through compensating the latency. As a trade-
off for this benefit, unplanned requests always experience 20ms
of time delay. However, as discussed before, it is an acceptable
amount of latency for such kinds of audio requests, compared
with their loose timing constraints.

2) Impact of Real-Time Audio Request Scheduling:
This experiment evaluated the scheduling performance of
SounDroid on mobile devices. Toward this, we first observed
how our custom mobile sound applications are scheduled on
various mobile platforms including Android, RTDroid, and
SounDroid.

In this experiment, to solely focus on the scheduling issue,
we implemented a platform to which our latency optimization
techniques are applied, and scheduled audio requests on the
platform with three different scheduling algorithms including
preemptive LIFO scheduling for Android, preemptive Fixed-
Priority (FP) scheduling for RTDroid, and EDF-V scheduling
for SounDroid. As seen in Table I, our custom applications gen-
erate three periodic inaudible requests (A1, A2, and A3) and a
single one-time audible request (A4). They were scheduled on
each scheduling mechanism for about 10s, their least common
multiple period. We then measured the response time of every
instance for each audio request Ai. Note that we assumed the
preemptive FP scheme assigns a higher priority to an audio
request which has a larger index number.

Figure 8(a) and (b) indicate that, under the scheduling
mechanism of both Android and RTDroid, the response time
of audio requests increases, even incurring deadline misses.

D1

D2

D3

D4

A3 A4

A1 A2

(a) On preemptive LIFO(Android)

D1

D2

D3

D4

0

200

400

600

800

0 2 4 6 8 10

R
e

s
p
o

n
s
e
 t

im
e
 (

m
s
)

Time (s)

S1 S2
S3 S4A3 A4

A1 A2

(b) On preemptive FP(RTDroid)

D1

D2

D3

D4

0

200

400

600

800

0 2 4 6 8 10

R
e

s
p
o

n
s
e
 t

im
e
 (

m
s
)

Time (s)

S1 S2
S3 S4A3 A4

A1 A2

(c) On EDF-V(SounDroid) w/o AFDS

D1

D2

D3

D4

0

200

400

600

800

0 2 4 6 8 10

R
e

s
p
o

n
s
e
 t

im
e
 (

m
s
)

Time (s)

S1 S2
S3 S4A3 A4

A1 A2

(d) On EDF-V(SounDroid) w/ AFDS

Fig. 8: Response time of each audio request.

TABLE I: Audio request specifications (the time unit is mil-
liseconds.).

Index Fi Ri Ci Ti Di

A1 Inaudible 0 40 110 (periodic) 110
A2 Inaudible 100 50 240 (periodic) 240
A3 Inaudible 0200 50 320 (periodic) 320
A4 Audible 5,000 500 ∞ (one-time) 600

This is because they assign a priority to audio requests
without a deep understanding of their constraints. For example,
under preemptive LIFO, A3 is delayed by up to 1.15s due
to other newly-arrived requests. In addition, the interference
from higher priority requests makes A1 experience 23 times
of deadline misses on preemptive FP. The EDF-V scheduling
algorithm of SounDroid also misses a deadline of A1, A2 and
A3 if AFDS is not supported (see Figure 8(c)). The major
reason is that A4 which has a long playback duration competes
to use an audio device with others even though it uses a
different frequency range. With the support of AFDS, as shown
in Figure 8(d), SounDroid satisfies all the timing constraints by
scheduling A4 independently of other requests based on their
frequency requirements.

3) QoS Satisfaction for Real-World Applications: In this
experiment, we evaluated the effect of SounDroid on real-world
mobile sound applications. Toward this, we measured the QoS
of MobileTheater [9], an audio device collaboration applica-
tion. Note that the current Android cannot schedule multiple
audio requests from mobile sound applications properly due to
its preemptive scheduling. To carry out a fair comparison, in
this experiment, we modified Android’s scheduler to support
the non-preemptive LIFO.
MobileTheater. In MobileTheater, each mobile device is as-
signed its own speaker role (e.g., left or right), and plays its
own audio channel stream for multi-channel surround sound
reproduction. For enriching user experience, it is required to
support the following tight timing guarantee; sounds emanating
from each device should arrive at a listener within 1ms of

[Player M1] [Player M2]

[Coordinator]

3) Multi-channel

 surround sound reproduction

Fig. 9: Procedures of MobileTheater for immersive sound
reproduction.

TABLE II: One-time audio requests of MobileTheater on each
mobile device Mk (the time unit is seconds.). Pk is determined
after the arrival time measurement, i.e., Pk ≥ dsig .

Index Fi Ri Si Ci Di

Asig inaudible 0 5 0.011 5 + Csig + 0.001
Ach audible Pk Pk + 5 30 5 + Cch + 0.001

arrival time difference. For this reason, MobileTheater tries to
achieve the high degree of accuracy through the sound arrival
time synchronization as seen in Figure 9:

• Each mobile device Mi emits an inaudible signal at the
measurement start time, and a special coordinating device
measures the sound arrival time of each device.
• The coordinator then adjusts each device’s playback start

time Pk based on the measured arrival time.
• Each device starts to play its audio channel stream at the

adjusted time.

To support the high synchronization accuracy, MobileTheater
should play two different audio requests very predictably (up to
1ms). Thus, to guarantee the high degree of predictability, each
playback is prearranged, e.g., 5s before its targeted playback
time.

In our experiment, MobileTheater reproduced stereo sur-
round sound effects with two mobile devices M1 and M2.
Each mobile device played two audio requests of Mobile
Theater as seen in Table II. In addition, to observe the effect
of audio request scheduling, we simultaneously run three
custom sensing applications on M1 (see Table III for their
constraints). We then measured the QoS of MobileTheater, i.e.,
the synchronization accuracy, over 50 times both on SounDroid
and Android. At the same time, we also estimated the sensing
rate of each sensing application.
Synchronization accuracy of MobileTheater. Figure 10
shows that Android never meets a desired accuracy of 1ms
of error in all cases. In the worst-case, the error increases
up to 111.2ms due to interference of sensing applications as
well as audio request dispatching latency. Such amount of
error may cause a significant degradation of user experience.
For example, multiple correlated sounds arrive 100ms after
the first-arriving sound. An auditory event is then dominantly
localized by the first-arriving sound and the delayed sounds are
perceived as an echo of the first sound [17]. It is worth noting
that in all trials, SounDroid meets the timing requirement
(i.e., 1ms) for MobileTheater with 625µs of synchronization
error (at most). Thus, SounDroid enables users to be im-
mersed in high-quality sounds of MobileTheater even in multi-
application environments.

TABLE III: Periodic audio requests of sensing applications
(the time unit is milliseconds.). Each request has an implicit
deadline, i.e., Ti = Di.

Index Fi Ri Si Ci Ti

A1 inaudible 100 100 39 300
A2 inaudible 55 55 27 100
A3 inaudible 712 712 11 30

0

50

100

150

0 10 20 30 40 50

A
rr

iv
a
l
ti
m

e

s
y
n
c
h
ro

n
iz

a
ti
o
n

e
rr

o
r

(m
s
)

The number of trials

Android SounDroid

Fig. 10: Arrival time synchronization accuracy of MobileThe-
ater.

Sensing rate of sensing applications. As seen in Figure 11,
both Android and SounDroid successfully support the desired
QoS of A1 and A2, each of which has a loose timing
constraint (e.g., 3.3Hz and 10Hz of sensing rate accordingly).
On the other hand, A3 which frequently requests an audio
playback in every 30ms experiences 24.5% of the performance
degradation, i.e., 7.6Hz of sensing rate decrease, on Android,
compared to SounDroid. This is because Android delays A3

if there is a newly-arrived request from other applications in-
cluding MobileTheater, even though a playback of A3 is more
urgent. Note that such the LIFO mechanism makes 49.1% of
requests of A3 miss its deadline (30ms). Such performance
gap can make a huge amount of difference on user experience.
For example, if a user plays a table tennis game, one of the
mobile motion games, with 10m/s of average racket speed,
Android increases the racket location error by up to 9.5cm
in comparison with SounDroid. Hence, the improved real-time
capability of SounDroid leads to enrich user experience more.

VII. DISCUSSION
So far, we have introduced SounDroid, specifically focusing

on its approach and effectiveness. While it is the first approach
towards mobile audio device management, there are a number
of issues to be discussed.
Limitations of real-time audio request scheduling. Our real-
time audio request scheduling is yet restricted in handling
the following situations. First, each audio request can have a
different importance, e.g., a phone call request versus a music
request. Second, non-preemptive long playback of an audio
request can block others for a long time. Last, sometimes,
multiple audio requests, e.g., background music and sound
effects in a game, can simultaneously share the same range
of frequencies. We believe that our request scheduling scheme
including EDF-V and AFDS could be extended to resolve such
issues. We can classify and prioritize audio requests based on
their importance and allow preemption. It is also possible to
use an alternative resource, e.g., vibrator, instead of an audio
device for audio requests which are expected to experience a
long starvation time. Furthermore, through more fine-grained
analysis for frequency requirements, we will re-model audio
requests and extend the AFDS scheduling mechanism.
Microphone support. SounDroid focuses mainly on managing
an audio output device, i.e., a loudspeaker. However, many
mobile sound applications also require to use a microphone.

0

10

20

30

A1 A2 A3

S
e
n

s
in

g
 r

a
te

 (
H

z
) Android SounDroid

Fig. 11: Sensing rate of each sensing application.

For instance, sensing applications make use of the microphone
as a receiver for sensing signals. In order to improve the QoS of
mobile sound applications, it is essential to manage not only an
audio output device, but also an input device. Thus, our future
work includes investigation of scheduling and optimization
techniques for the audio input device, and introduces a more
powerful framework for mobile sound applications.
Time delays on other resources. Mobile sound applications
can also suffer from a latency during using other resources. As
an example, the execution of core components of SounDroid
can be delayed due to the CPU competition, interrupt handling,
and garbage collection on Android. These traditional real-time
issues have been addressed many times in existing works such
as RTLinux [18] and FijiVM [19]. Therefore, SounDroid would
be able to support a higher level of QoS for mobile sound
applications by incorporating such techniques.

VIII. RELATED WORKS
Many operating systems such as RTLinux [18] and

RTEMS [20] have supported real-time applications. Most of
them try to meet timing requirements through a priority-based
CPU scheduling mechanism. Some real-time works [19], [21],
[22] have also handled other resources such as memory, file
system, and network I/O. However, none of them have been
done in focusing on real-time issues on an audio device.

RTDroid [10] explores core components of Android includ-
ing Alarm Manager, Message Handler, and Sensor Manager
for real-time support on commodity mobile devices. It then
provides a novel architecture for priority-based scheduling of
requests on various kinds of resources and functionalities.
Especially, it further improves the real-time capability of
Android by porting RTLinux and FijiVM on it. However, its
resource management scheme is not suitable to satisfy various
real-time characteristics of audio requests. For example, it does
not take their acoustic requirements into account audio request
scheduling, i.e., it just regards an audio device as a single
preemptible resource. In addition, during dispatching audio
requests, a playback is delayed even decreasing the QoS of
mobile sound applications. Thus, for real-time supports on an
audio device, we need to carefully look at audio requests and
their playback procedures as this work does.

IX. CONCLUSION
In this paper, we describe the SounDroid framework which

manages an audio device for supporting real-time characteris-
tics of newly-emerging applications, i.e., mobile sound appli-
cations. SounDroid is basically designed to overcome several
challenges of existing platforms such as Android with deeply
understanding not only requirements of various audio requests
and but also playback mechanisms. Capturing this, it proposes
novel scheduling mechanisms, EDF-V and AFDS, which fits
into the unique acoustic constraints. In addition, SounDroid
supports a predictable use of an audio device by optimizing
the audio request dispatching procedures. Our simulation and

experimental results show that SounDroid effectively manages
an audio device, while satisfying real-time characteristics of
audio requests. It, especially, provides a significant enhance-
ment in the quality-of-service of real-world mobile sound
applications, which was previously difficult to achieve on
existing mobile platforms. Consequently, we believe that our
audio device management techniques would be synergistic
to mobile platforms, enriching user experience through the
improved real-time support for mobile sound applications.

X. ACKNOWLEDGMENTS
This work was supported in part by BSRP (NRF-2010-

0006650, NRF-2012R1A1A1014930), KEIT(2011-10041313),
NCRC (2010-0028680), and IITP (B0101-15-0557) funded by
the Korea Government (MEST/MSIP/MOTIE).

REFERENCES
[1] K. Liu, X. Liu, and X. Li, “Guoguo: Enabling Fine-grained Indoor

Localization via Smartphone,” in MobiSys, 2013.
[2] S. Gupta, D. Morris, S. N. Patel, and D. Tan, “SoundWave: Using the

Doppler Effect to Sense Gestures,” in SIGCHI, 2012.
[3] M. T. I. Aumi, S. Gupta, M. Goel, E. Larson, and S. Patel, “DopLink:

Using the Doppler Effect for Multi-Device Interaction,” in UbiComp,
2013.

[4] K.-Y. Chen, D. Ashbrook, M. Goel, S.-H. Lee, and S. Patel, “AirLink:
Sharing Files Between Multiple Devices Using In-Air Gestures,” in
UbiComp, 2014.

[5] Z. Sun, A. Purohit, R. Bose, and P. Zhang, “Spartacus: Spatially-
Aware Interaction for Mobile Devices Through Energy-Efficient Audio
Sensing,” in MobiSys, 2013.

[6] C. Peng, G. Shen, Y. Zhang, Y. Li, and K. Tan, “BeepBeep: A High
Accuracy Acoustic Ranging System using COTS Mobile Devices,” in
SenSys, 2007.

[7] Z. Zhang, D. Chu, X. Chen, and T. Moscibroda, “SwordFight: Enabling
a New Class of Phone-to-Phone Action Games on Commodity Phones,”
in MobiSys, 2012.

[8] J. Qui, D. Chu, X. Meng, and T. Moscibroda, “On the Feasibility of
Real-Time Phone-to-Phone 3D Localization,” in SenSys, 2011.

[9] H. Kim, S. Lee, J.-W. Choi, H. Bae, J. Lee, J. Song, and I. Shin, “Mobile
Maestro: Enabling Immersive Multi-Speaker Audio Applications on
Commodity Mobile Devices,” in UbiComp, 2014.

[10] Y. Yan, S. Cosgrove, V. Anand, A. Kulkarni, S. H. Konduri, S. Y. Ko,
and L. Ziarek, “Real-Time Android with RTDroid,” in MobiSys, 2014.

[11] K. Jeffay, D. F. Stanat, and C. U. Martel, “On Non-Preemptive Schedul-
ing of Periodic and Sporadic Tasks,” in RTSS, 1991.

[12] C. Ekelin, “Clairvoyant Non-Preemptive EDF Scheduling,” in ECRTS,
2006.

[13] Samsung. GroupPlay, http://content.samsung.com/us/contents/aboutn/
groupPlay.do.

[14] S. B. Shneiderman and C. Plaisant, ”Designing the user interface”.
Pearson Addison Wesley, 2005.

[15] J. Blauert, ”Spatial Hearing: The Psychophysics of Human Sound
Localization”. The MIT Press, revised edition, 1997.

[16] Microsoft. Kinect, http://www.microsoft.com/en-us/kinectforwindows.
[17] R. Y. Litovsky, H. S. Colburn, W. A. Yost, and S. J. Guzman, “The

precedence effect,” The Journal of the Acoustical Society of America,
vol. 106, no. 4, pp. 1633–1654, 1999.

[18] D. Hart, J. Stultz, and T. Ts’o, “Real-Time Linux in Real Time,” IBM
Systems Journal, vol. 2, no. 47, pp. 207–220, 2008.

[19] F. Pizlo, L. Ziarek, E. Blaton, P. Maj, and J. Vitek, “EuroSys,” in
ECRTS, 2010.

[20] RTEMS, http://www.rtems.org.
[21] H. Kim, M. Lee, W. Han, K. Lee, and I. Shin, “ACIOM: Applica-

tion Characteristics-Aware Disk and Networkd I/O Manamegment on
Android Platform,” in EMSOFT, 2011.

[22] Y.-H. Wei, Q. Leng, S. Han, A. K. Mok, W. Zhang, and M. Tomizuka,
“RT-WiFi: Real-Time High-Speed Communication Protocol for Wire-
less Cyber-Physical Control Applications,” in RTSS, 2013.

