
Resilient Baseband Processing in Virtualized RANs with Slingshot
Nikita Lazarev‡, Tao Ji§, Anuj Kalia†, Daehyeok Kim†§, Ilias Marinos†, Francis Y. Yan†

Christina Delimitrou‡, Zhiru Zhang¶, Aditya Akella§ ∗
†Microsoft, ‡MIT, §UT Austin, ¶Cornell University

ABSTRACT
In cellular networks, there is a growing adoption of virtualized
radio access networks (vRANs), where operators are replacing
the traditional specialized hardware for RAN processing with soft-
ware running on commodity servers. Today’s vRAN deployments
lack resilience, since there is no support for vRAN failover or up-
grades without long service interruptions. Enabling these features
for vRANs is challenging because of their strict real-time latency
requirements and black-box nature. Slingshot is a new system that
transparently provides resilience for the vRAN’s most performance-
critical layer: the physical layer (PHY). We design new techniques
for realtime workload migration with fast RAN protocol middle-
boxes, and realtime RAN failure detection. A key insight in our
design is to view the transient disruptions from resilience events
to RAN computation state and I/O similarly to regular wireless
signal impairments, and leverage the inherent resilience of cellular
networks to these events. Experiments with a state-of-the-art 5G
vRAN testbed show that Slingshot handles PHY failover with no
disruption to video conferencing, and under 110ms disruption to a
TCP connection, and it also enables zero-downtime upgrades.

CCS CONCEPTS
•Networks→Wireless access points, base stations and infras-
tructure; • Computer systems organization → Availability;
Reliability.

KEYWORDS
Virtualized Radio Access Networks, Cellular Networks, Resilience,
Fault tolerance

ACM Reference Format:
Nikita Lazarev, Tao Ji, Anuj Kalia, Daehyeok Kim, Ilias Marinos, Francis
Y. Yan, Christina Delimitrou, Zhiru Zhang, Aditya Akella . 2023. Resilient
Baseband Processing in Virtualized RANswith Slingshot. InACM SIGCOMM
2023 Conference (ACM SIGCOMM ’23), September 10–14, 2023, New York, NY,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3603269.
3604841

∗The first two authors contributed equally to this work during their internships at
Microsoft.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0236-5/23/09.
https://doi.org/10.1145/3603269.3604841

1 INTRODUCTION
Radio access networks (RANs) are a part of the cellular network
infrastructure (e.g., LTE and 5G) that converts wireless signals be-
tween the user devices (called UEs, for “user equipment”) and radio
cell towers into data packets and vice versa. Today, the cellular
industry is seeking to replace specialized RAN hardware with soft-
ware systems running on commodity servers deployed in edge
datacenters located close to the radio cell towers. This approach,
called virtualized RAN (vRAN), has the benefits of reducing vendor
lock-in, rapid feature development and upgrades, easier mainte-
nance, and possibly lower costs [14, 49]. Some cellular network
service providers, such as Verizon and Rakuten Mobile, have al-
ready deployed vRANs [5, 25], and others such as Vodafone [26]
are currently in the process of adopting them. Figure 1 shows a
typical vRAN deployment that statically provisions vRAN servers
to handle specific radios.

Today’s vRAN lacks resilience, with no support for fast failover
or zero-downtime upgrades. These features are required to provide
high availability for the cellular network which is a critical infras-
tructure for emergency services, public safety, and other mission-
critical applications. Any given vRAN server is likely to crash every
few months [28, 33], resulting in severe user downtime lasting
over five seconds even if the radio is immediately reconnected to
a backup vRAN using our fronthaul migration techniques (§8.1).
Planned RAN upgrades happen as often as every day, and today
they require manually pre-planned maintenance windows in which
parts of the network are taken offline [61, 73]. A resilient vRAN
system should migrate processing during failovers and upgrades to
another server without significant downtime or network disruption.

Two characteristics of the vRAN software make it challenging to
provide resilience: its realtime latency requirements, and its black-
box nature. First, the vRAN must complete tasks in strict transmis-
sion time intervals (TTIs), measuring 500 µs in 5G’s common deploy-
ment configurations. In comparison, existing resilience approaches
based on virtual machine or container migration/replication tech-
niques impose blackouts lasting several 100ms [37, 59, 65, 67, 69,
71, 78]. Second, production-grade vRANs use extremely complex
and often proprietary software written by domain experts. This
makes it infeasible to modify the software to implement custom
logic required by existing state replication–based network function
resilience techniques [50, 62, 66]. This challenge is exacerbated by
the vRAN consisting of modules developed independently by differ-
ent vendors, such as the layer-1 (Physical Layer, or PHY) and layer-2
(or L2, including Media Access Control and Radio Link Control).

In this paper, we present Slingshot, a new system that takes the
first step towards building the required systems support for vRAN
resilience. Since the vRAN stack is modular, a practical way towards
a resilient vRAN is to make each module independently resilient,
exploiting the specific properties of the module. This paper focuses

https://doi.org/10.1145/3603269.3604841
https://doi.org/10.1145/3603269.3604841
https://doi.org/10.1145/3603269.3604841

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Lazarev and Ji et al.

Server

vRAN stack

Fronthaul

To core

Server

vRAN stack

Switch

Radio Units

Figure 1: High-level view of a typical vRAN deployment to-
day. Here, each server is statically provisioned to serve a
certain subset of connected RUs.

on the vRAN’s PHY layer, which has the highest CPU cost and
software complexity, and the tightest realtime latency deadlines
among all vRAN layers. Slingshot requires no changes to existing
vRAN software or hardware components, so it is incrementally
deployable. Since we target the vRAN’s lowest layer, the techniques
we present can be fundamental building blocks for future resilience
work on other vRAN layers.

Slingshot’s design is based on our observation that the short-
term vRAN computation or I/O impairments that can occur during
resilience events—such as losing soft PHY state computed in a
previous TTI, or dropping some fronthaul packets—are similar to
routine wireless signal quality degradation; Slingshot leverages
the cellular network’s inherent resilience to bad signal quality to
preserve connectivity despite short-term impairments. This allows
us to design a clean and lightweight migration technique called
PHY migration that moves the PHY processing to another server
by properly managing the two types of traffic processed by the
PHY: the PHY–RU fronthaul and the L2–PHY traffic. This technique
enables zero-downtime planned upgrades, and, in combination with
our novel RAN failure detector, also provides fast failover without
significant user disruption.

To provide PHY migration in a transparent and inter-operable
way, we design new middleboxes that act as shim layers between
different vRAN layers. First, we design a programmable switch–
based middlebox between the RU and PHY to manage the high-
bandwidth fronthaul traffic without adding the latency and CPU
overhead of a software-based alternative. Slingshot introduces two
novel realtime in-switch components: one to migrate fronthaul
traffic to/from the primary or secondary PHY, and another to detect
PHY failures within a TTI. Our failure detection technique is based
on the insight that all realtime vRAN layers send packet streams that
can be used as natural heartbeats. Second, we design a software
middlebox called Orion between the L2 and PHY layers. Orion
maintains low-overhead hot standby secondary PHYs and initiates
PHY migration by properly managing L2–PHY protocol messages.

We implement the fronthaul middlebox in P4-16 [15] and Python,
and Orion in C++, and show that they work with an unmodified
commercial vRAN stack consisting of Intel FlexRAN (PHY) [10]
and CapGemini 5G (L2+) [6].

We evaluate Slingshot on a state-of-the-art vRAN testbed with
end-to-end applications and microbenchmarks. We run a video
conferencing application with Slingshot and show zero downtime
during PHY failover, compared to 6.2 seconds without Slingshot. We
also show that Slingshot moves PHY processing between servers
orders of magnitude faster than pre-copy VM migration, and drops

Low PHY
FFT

MAC, RLCRadio
RF, ADC

L1 (PHY) L2+

RU DU CU

PDCP, RRC

Channel
estimation Equalization De-modulation

De-
scrambling CRC CheckFEC

Decoding

Split-7.2x
(Fronthaul)

Split-6
(FAPI)

Edge datacenterRadio
hardware

Core

Figure 2: A simplified structural view of a standard vRAN
stack with split option-7.2× and 6.

no TTIs during planned migrations. Using iperf [3], we demon-
strate the end-to-end performance recovery after PHY failure with
Slingshot is near-immediate for UDP, and takes 110 ms in the worst
case for TCP connections. Finally, we show that Slingshot enables
zero-downtime PHY upgrades.

2 MOTIVATION AND BACKGROUND
2.1 Motivation for RAN resilience
The cellular network is a critical infrastructure that must support
high availability. Telecom deployments typically require five nines
of uptime [56], which permits at most six minutes of downtime per
year, and means that vRAN failover and upgrades must be handled
with little user downtime. We find that in today’s vRANs, these
events can have a drastic impact on users’ connectivity: without
Slingshot, a 5G UE disconnects for 6.2 seconds on average when the
vRAN fails, even if the RU is immediately reconnected to a standby
vRAN using our in-switch middlebox (§8.1).
Resilience to faults. A resilient PHY must tolerate hardware or
software faults. The limited public analyses of server hardware fail-
ures suggest mean-time-between-failure values from 10 days [28]
to 60 days [33, Table 3]; repairs take several hours [28], violating
the five-nines target. vRANs are particularly vulnerable to software
crashes: similar to Turlapati and Bhat [70], our experience in oper-
ating a vRAN testbed (§8) finds crashes due to imperfect support
for real-time applications in Linux (e.g., kernel thread starvation,
and co-existence with non-realtime processes).
Resilience to planned upgrades. A key promise of virtualized
RANs is easier roll-out new RAN features and updates, OS/security
patches, and hardware upgrades. AT&T reports upgrading sub-
sets of their RANs as often as every day, with pre-planned down-
time windows for maintenance [61, 73]. Experience from large
distributed system deployments shows that mechanisms for zero-
downtime upgrades and maintenance are of paramount impor-
tance [32, 39]. Upgrades in today’s vRANs involve significant user
downtime, lasting several seconds.

2.2 A primer on vRAN deployments
Figure 2 shows a simplified view of the main components of the
vRAN stack. Most of today’s vRAN deployments, such as Rakuten
Mobile [23], Vodafone [24] and Deutsche Telekom [9] are based
on CPUs running Intel’s FlexRAN PHY software. We target these
architectures, although our design also applies to other hardware
architectures (e.g., DSPs, FPGAs, or GPUs).

Resilient Baseband Processing in Virtualized RANs with Slingshot ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Hardware. A vRAN deployment consists of several radio units
(RUs) connected to a nearby edge datacenter via fiber-optic fron-
thaul links. A switch in the edge datacenter connects an RU to
a vRAN server; today, this mapping can only be changed rarely
(e.g., when new RUs or servers are added). Dedicated commodity
servers in the edge datacenter run the RAN’s different layers as
bare-metal or containerized Linux applications. Of these layers, the
layer-1 (PHY) and layer-2 (Media Access Control and Radio Link
Control) have strict real-time latency requirements. Higher layers
of the vRAN stack as well as the core network do not have real-time
latency requirements, and may therefore run in a larger datacenter
farther away from the RUs and DUs.

Software. The vRAN consists of large and complex (e.g., several
hundred thousand source lines of code) highly-optimized, multi-
threaded software applications written by specialized vendors. The
PHY performs compute-intensive signal processing tasks, including
channel estimation, modulation/demodulation, and forward error
correction. We use Intel’s FlexRAN PHY [10], which is a production-
grade 5G PHY implementation widely used in vRAN deployments.
Our proposed techniques are also applicable to other software
PHY implementations, such as those from OpenAirInterface [57]
and srsRAN [17]. The L2 is primarily responsible for scheduling
the frequency and time resources among users (UEs). This layer
also connects to higher non-real-time vRAN layers, which in turn
connect to the cellular core network. Several vendors provide L2
implementations, including CapGemini [6] and RadiSys [16]. Each
process (e.g., PHY or L2) supports handling multiple RUs.

Functional splits and interfaces. To modularize complex RAN
systems, the standards define “splits” specifying different ways
of partitioning RAN functionality across software and hardware
boundaries. A key tenet of vRANs is the use of open specifications
that have broad adoption, allowing these components to interoper-
ate. For the fronthaul interface between the PHY and RU, today’s
vRANs use the “O-RAN split option-7.2×” standard from the O-RAN
consortium [12]. The fronthaul carries Ethernet packets containing
IQ samples, which the PHY handles with low-latency userspace
packet I/O. The PHY/L2 interface uses the FAPI (“Functional API”)
specification from the Small Cell Forum [19]. In tightly-coupled
systems that co-locate the PHY and L2 on the same server, FAPI
messages are carried over shared memory. In decoupled systems,
which we believe are crucial for vRAN resilience, the PHY and
L2 exchange FAPI messages over an Ethernet network with the
“network FAPI” (nFAPI) protocol [20], which implements O-RAN’s
split option-6 [13].

2.3 Availability target
We target a cellular network downtime of under 10ms during re-
silience events, which can be considered negligible for cellular
deployments. For example, during frequent mobility events called
“handovers” where a moving UE transfers from one cell to another,
UEs typically experience larger downtime. Some measurements
show that handovers happen as frequently as once every 70 sec-
onds while walking, resulting in suspension of service for 24.7ms
on average [52]; today’s 5G networks exhibit somewhat higher
handover delays [52].

0 100 200 300 400
VM pause time (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

TCP
RDMA

Figure 3: Distribution of VM pause time while migrating
FlexRAN in a VM via TCP or RDMA. FlexRAN crashes in all
runs.

By targeting a smaller downtime than handovers, we ensure that
UEs do not experience unusual disruption during PHY resilience
events. Note that resilience events are far rarer than handovers,
and degraded performance (e.g., packet losses) for similar ≈10 ms
timescales during them is also acceptable, similar to handovers [43,
Fig 4].

2.4 PHY downtime with VM migration
While one can consider using general-purpose workload migration
techniques such as virtual machine (VM) or container migration for
PHY resilience, the PHY’s real-time latency requirements preclude
using these approaches. These approaches impose blackout periods
of up to hundreds of milliseconds [37, 77], which causes UEs to
de-synchronize and completely disconnect from the network [29].

Figure 3 shows our measurements of VM pause time while mi-
grating a VM running FlexRAN; we describe the 5G cell’s config-
uration in Section 8. These experiments use a simplified version
of FlexRAN that does not use any PCIe devices (e.g., for fronthaul
packet I/O or for FEC acceleration), which under-represents the ac-
tual migration time. We use QEMU/KVM [4, 11] as the hypervisor,
which optimizes VM pause time duringmigration by using pre-copy
techniques that iteratively transfer dirty memory pages. We per-
form 80 live migration experiments, using RDMA over 100GbE to
speed up migration [1]. Even with these optimizations, the median
VM pause time is 244ms, which is large enough for UEs to fully
disconnect from the network after their Radio Link Failure timer
(50ms in our setup) expires [29]. This downtime happens because
FlexRAN’s signal processing continuously generates dirty memory
pages, causing the hypervisor to pause the VM to ensure their con-
sistency after the migration. We also observe that FlexRAN crashes
during all migration runs, which is expected since the designers
of vRAN’s real-time layers optimize the software assuming a low
jitter environment. For example, vRAN operators require the server
platform to provide sub-10 µs thread interruption times under all
circumstances [18], which is several orders of magnitude lower
than the pause time with today’s VM migration techniques.

3 OVERVIEW OF SLINGSHOT
Our goal is to design a resilience solution for the PHY layer of
vRANs that provides the following three properties:
• Minimal disruption to cellular connectivity:During failover
or upgrade events, user downtime must be less than 10ms to
keep the downtime comparable to routine handovers.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Lazarev and Ji et al.

• Transparency to existing vRAN components: Since the
vRAN stack is highly complex and different layers are usually
provided by different vendors, Slingshot should not depend
on one particular implementation, which reduces the design’s
applicability.

• Low resource and performance overheads: Given the lim-
ited compute resources available in edge datacenters and the
need to keep costs low, the design must incur little compute
overhead. Also, it must not violate the PHY’s realtime latency
requirements.
Slingshot meets these goals without any modifications to exist-

ing vRAN software. We build Slingshot on our observation that
short-term vRAN computation or I/O impairments during resilience
events, such as losing soft PHY state from a previous TTI or drop-
ping some fronthaul packets, are similar to routine wireless sig-
nal quality degradation (§4). By leveraging the cellular network’s
inherent resilience to bad signal quality, Slingshot can maintain
connectivity despite short-term impairments.

Based on this observation, we design a lightweight stateless
migration mechanism for the PHY layer, called PHY migration, that
moves the PHY processing to a hot-standby secondary PHY process
by properly managing the two types of traffic processed by the PHY
when a resilience event happens: the PHY–RU fronthaul traffic and
the L2–PHY traffic. To achieve PHY migration transparently to the
existing vRAN stack while handling the two classes of traffic in
protocol-compliant ways, Slingshot uses two types of middleboxes
that act as shim layers: one between the RU and PHY (§5), and one
between the L2 and PHY (§6).

Scope. This paper focuses on 5G’s Enhanced Mobile Broadband
(eMBB) service that operates in the sub-10GHz frequency range
with 30 KHz subcarrier spacing, which is the primary use case for
5G vRANs today. However, the ideas presented here apply generally
to cellular PHY layers, such as mmWave, which operate at higher
frequencies and use larger subcarrier spacing.

3.1 Challenges
Realizing PHY migration with the new middleboxes presents the
following three challenges.

C-1. Minimizing overhead of middleboxes and hot-standby
secondary PHY processes. Since Slingshot middleboxes and the
hot-standby secondary PHY process are additional components
in the vRAN deployment, they may add compute overhead and
latency. We find that handling the high volume of fronthaul traffic
with a conventional software-based middlebox reduces the edge
datacenter’s coverage radius by over 10%, while requiring addi-
tional CPU cores and NIC bandwidth. Also, naïvely maintaining
the compute-intensive secondary PHY by duplicating the primary
PHY’s processing results in a 100% compute overhead for resilience.

C-2. Transparent traffic management and failure detection.
Managing the two classes of PHY traffic could be straightforward if
modifying the RU’s firmware or the L2 software to add support for a
secondary PHY was possible, but it would violate our transparency
requirement. Similarly, using existing low-latency failure detection
mechanisms (e.g., [27, 38, 46]) requires modifying the PHY to send
periodic heartbeat messages to a failure detector.

L1 L2+Switch
To coreFAPI

O-RAN
7.2x

(a) Logical model of existing vRAN deployments

To core

L1

O
rio

n

L1’

O
rio

n

L2+

O
rio

n

Switch

FH mbox

(b) Logical vRAN deployment model with Slingshot

Figure 4: Logically, Slingshot provides a resilient L1 to higher
vRAN layers and the RU. To do this, Slingshot employs an
in-switch fronthaul middlebox, and a software-based FAPI
middlebox called Orion.

C-3. Correct processing of RAN protocols. vRANs are built
using diverse components from different vendors, which are often
closed-source black boxes. Coupled with the notorious complexity
of RAN protocols—described by Chen et al. [35] as “characterized
by convoluted descriptions in thousands of documents, on millions
of pages”—this presents a significant challenge in designing and
implementing resilience in an interoperable way.

3.2 Key ideas
We tackle these challenges with three key ideas:
I-1. In-switch fronthaul middlebox (§5). To manage the fron-
thaul traffic while minimizing overheads, we design the fronthaul
middlebox using a programmable switch. We observe that the edge
datacenter’s switch located between the RU and vRAN servers can
naturally handle fronthaul packets without additional compute re-
sources or latency. Today’s commodity programmable switches can
handle several Tbps of traffic with negligible added latency (e.g.,
3.2 Tbps for Arista’s 32-port 100GbE switches [2]), sufficient for
processing the fronthaul traffic for hundreds of RUs.
I-2. In-switch fast failure detection (§5.2).To detect PHY failures
rapidly, we design a fast failure detection mechanism running on
the in-switch fronthaul middlebox. Our key insight is that a healthy
PHY is a strict real-time application that sends downlink fronthaul
packets to the RU in every slot (synonymous with TTI) duration.
We use these packets as a natural liveness indicator to detect PHY
failures by monitoring their inter-packet gap, without requiring
additional components or modifications to the vRAN software.
I-3. Software-based L2-PHY FAPI middlebox (§6). We observe
that interposing on the common FAPI interface—shared between
various PHY and L2 implementations—provides a narrow waist that
can be used to transparently provide PHY resilience. We realize this
in a software middlebox called Orion that properly handles FAPI
messages to (1) keep the secondary PHY alive with low overhead by
sending null FAPI APIs and (2) hide the existence of the secondary
PHY or PHY migration from both the L2 and PHY.

3.3 Slingshot architecture
Figure 4 illustrates a simplified logical view of the “resilient PHY”
abstraction provided by Slingshot. The actual placement of the

Resilient Baseband Processing in Virtualized RANs with Slingshot ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

primary and secondary PHYs (L1 and L1′, respectively), and L2
processes on servers can be configured in different ways. Note
that this paper primarily focuses on the most challenging fully-
decoupled use case, where all three processes run on different
servers. The other extreme case is where all three processes run
on the same server, where Slingshot can be used to transparently
upgrade the PHY.

PHYmigration with Slingshot. During normal operation, the in-
switch fronthaul middlebox (FH-mbox) forwards fronthaul packets
to/from the primary. Similarly, the L2-PHY software middlebox
(Orion) at the L2 sends unmodified FAPI messages to the primary
PHY, and sends null FAPI messages with no signal processing work
to the secondary. This keeps the secondary PHY alive and hot,
while avoiding the high CPU overhead of keeping a duplicate PHY
that receives real work. When the primary PHY fails, the FH-mbox
detects the failure in realtime by noticing the gap in downlink
fronthaul packets from the primary PHY, and notifies the L2-side
Orion. The L2-side Orion reconfigures the FH-mbox in realtime to
steer the fronthaul traffic to the secondary PHY. It also steers the
FAPI traffic to the secondary PHY, which completes PHY migration.
Importantly, during PHY migration, Slingshot does not carry over
any state from the primary PHY to the secondary.

4 PHY PROCESSING IMPAIRMENTS ≈
WIRELESS SIGNAL IMPAIRMENTS

In Slingshot, we use our observation that the effect of short-term
PHY processing impairments, i.e., the loss of PHY computational
state and fronthaul packets, resembles the effects of bad signal qual-
ity. Slingshot uses cellular networks’ inbuilt ability to handle bad
signal quality to mitigate the effects of PHY migration. UEs natu-
rally experience performance variations due to the unreliable and
shared nature of wireless networks. For example, even stationary
5G UEs with a clear line of sight to the cell tower can experience
up to 4× variation in throughput [55]. Importantly, the rate of
resilience-related PHY impairments is minuscule when compared
to wireless signal impairments, and can therefore be ignored: As-
suming a migration per week (e.g., for upgrades), only around 10−9
TTIs are effected, whereas even “ultra-reliable” RANs allow signal
decoding failures in 0.1% TTIs [58].

This observation allows Slingshot to migrate PHY processing
between two PHY processes without transferring any state while
meeting our 10ms availability target (§2.3). This contrasts with
the strong consistency-based approaches taken for higher layers of
the cellular stack such as the core network, that preserve all state
and I/O during migration [48, 56]. Such approaches are not feasible
for the PHY because of the much larger amount of state and I/O,
realtime latency deadlines, and the lack of source code.

Intuitively, we view the PHY as a task executor responsible for
only performing signal processing tasks against radio data. Across
TTIs, the PHY maintains only a short-term soft state that spans
only a few TTIs; a long-term hard state for the RU, PHY, and UEs
is maintained in the higher vRAN layers. As we discuss below,
the PHY-level uplink/downlink transmission failures caused the
discarding of this state last for only a few milliseconds.

While our discussion focuses on PHY state for brevity, the same
arguments apply for the ≈three TTIs of fronthaul packets lost by

Slingshot during PHY failures (§8.2). Missing fronthaul packets
cause the PHY to process garbage-valued I/Q samples, which is
indistinguishable from the PHY performing signal processing on a
noisy wireless channel.

4.1 Migrating at TTI boundaries
The PHY performs work at the granularity of TTIs (500 µs in our
setup): The L2 issues requests to the PHY in every TTI describing
the TTI’s signal processing tasks, with information such as the
set of UEs active in that TTI, and per-UE modulation and coding
schemes. The PHY returns per-TTI responses with the data decoded
on the uplink, and transmits encoded IQ samples to the radio on
the downlink.

We design Slingshot to migrate PHY processing only at TTI
boundaries. Concretely, the primary PHY processes TTIs 0 − 𝑖 , and
the secondary PHY processes subsequent TTIs. This frees Slingshot
from the need to transfer any intra-TTI (e.g., intermediate computa-
tion results like the demodulated data before decoding) state across
the migration.

We next discuss in detail the state that the PHY retains across
TTIs, and why Slingshot can safely discard them. We focus our
discussion on uplink processing; similar arguments apply to the
downlink (§8.4).

4.2 Inter-TTI state in uplink processing
Average signal-to-noise ratio (SNR). The PHY maintains a mov-
ing average for the SNR for every connected UE, which it uses to
detect when a UE disconnects from the cell. In Slingshot, we ignore
the state of the moving average filter during migration, causing the
destination PHY to use a stale or default SNR value before the filter
reconverges (for ≈25ms). We argue that this is acceptable because
the changed SNR could have also happened due to impairments in
the UE’s wireless channel, which the RAN is designed to handle.
Retransmission buffers. Modern RANs use “soft-combining” re-
transmission schemes [36]. In all such schemes, such as 5G’s Hybrid
Automatic Repeat reQuest (HARQ) scheme, the PHY retains recent
bad UE transmissions that the PHY fails to decode. When the UE
subsequently retransmits, the PHY later combines the retransmis-
sion with prior transmissions from the UE to improve the likelihood
of successful decoding. 5G’s HARQ procedure lasts several TTI as it
includes an original transmission and up to three retransmissions.

Similarly to the SNR filter, Slingshot ignores HARQ buffers dur-
ing migration, causing the destination PHY to use a stale or default
HARQ buffer. This causes the PHY’s CRC-protected forward er-
ror correction decoding to fail, resulting in retransmissions at the
RAN’s higher layers (e.g., RLC and the L3). Importantly, this is no
different from a normal PHY operation. Commercial networks aim
for PHY decoding failure rates far higher than the ≈ 10−9 fraction
of TTIs affected by once-a-week PHY migrations, even after all
four HARQ retransmissions (called the “residual block error rate”):
0.5–2% in mobile broadband [72, 76], and 0.1% in ultra-reliable
use cases [58]. We present experiments for PHY migration during
HARQ retransmissions in §8.4.

In summary, cellular networks’ built-in ability to handle bad
signal quality enables migrating PHY processing between two PHY
processes without transferring any state. Building on this, we design

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Lazarev and Ji et al.

our lightweight PHY migration mechanism by introducing two
types of middleboxes that sit between the RU and PHY, as well as
between the L2 and PHY, to properly migrate traffic between the
two PHYs. In the following sections, we present our design of RU-
to-PHY fronthaul middlebox (§5) and L2-to-PHY middlebox (§6).

5 IN-SWITCH FRONTHAUL MIDDLEBOX
To support migration for the high-bandwidth and low-latency fron-
thaul traffic with low overhead, we chose to design a fronthaul
middlebox on a programmable switch. We observe that the edge
datacenter’s switch can naturally inspect all fronthaul packets since
it is located at the datacenter’s vantage point. Today’s commodity
programmable switches can handle several Tbps of traffic with
negligible added latency (e.g., 3.2 Tbps for Arista’s 32-port 100GbE
switches [2]), which is sufficient for hundreds of RUs.

Slingshot’s fronthaul middlebox must support (1) steering uplink
packets from the RU to the current primary PHY, and (2) block-
ing downlink control-plane packets from a hot-standby secondary
PHY from reaching the RU. In addition, the middlebox should allow
changing the active PHY at exactly a TTI boundary, i.e., the RU com-
municates with the primary PHY for all TTIs ≤ 𝑖 , and the secondary
PHY for all TTIs > 𝑖 . This is needed to ensure that the RU and PHYs
receive only protocol-compliant fronthaul packet sequences, which
is needed for interoperability. Without TTI boundary alignment,
the RU can receive packets for the same TTI from two PHYs, which
can cause the RU to malfunction. To support these features, we
develop new ideas including (1) virtual PHY addresses, (2) using
fronthaul packet header fields to detect TTI boundaries, and (3) an
indirect data structure for storing the RU-to-PHY mapping.
Drawbacks of software-based approaches. While a software-
based middlebox can provide these features, it introduces three
overheads that our switch-based approach avoids. First, by increas-
ing fronthaul latency, it reduces the radius of the geographical
area that a vRAN datacenter can serve. The fronthaul link in 5G
vRAN deployments has a strict sub-100 µs maximum one-way de-
lay requirement; our DPDK-based software version of Slingshot’s
fronthaul middlebox increases the 99.999th percentile one-way fron-
thaul latency by around 10 µs, reducing the maximum radius by 10%.
Second, it increases the operational cost by doubling the required
per-server NIC bandwidth by adding an extra hop to each fronthaul
packet [40]. Third, it requires additional CPU cores (around 10% of
total PHY cores with FlexRAN as the PHY) to be dedicated to the
software middlebox.

Note that as we describe in §6, we can afford to use a software
middlebox for L2–PHY traffic since its volume is far less than fron-
thaul traffic. The L2 and PHY exchange user bits, whereas our
fronthaul middlebox handles raw floating-point IQ samples. For
example, in our testbed, the downlink fronthaul traffic from the
RU uses 4.5Gbps, whereas the downlink L2-PHY traffic uses only
around 100Mbps.

5.1 RU-to-PHY mapping in the data plane
In a conventional RAN deployment, the switch forwards fronthaul
packets from the RU to the PHY using a static RU-to-PHY mapping.
However, for PHY migration, this static mapping does not work
since the RU must communicate with the current primary PHY. To

Uplink
packet RU ID

Clone
PHY ID

RU
-to

-P
HY

m

ap
pi

ng

M
ig

ra
tio

n
re

qu
es

t s
to

re

ID

di
re

ct
or

y

migrate_on_slot

Ad
dr

es
s

di
re

ct
or

yDest.
PHY ID

PHY’s
address

Figure 5: A simplified view of uplink fronthaul traffic pro-
cessing logic in the fronthaul middlebox data plane.

allow dynamically changing the RU-to-PHYmapping, Slingshot lets
each RU send fronthaul packets using a virtual PHY address, which
our in-switch middlebox translates into a physical PHY address.

How canwe change this mapping (1) in realtime and (2) at exactly
TTI boundaries? The switch control plane can update the mapping,
but it has high latency (e.g., 29ms 99.9th percentile for a rule update
in our testbed), and it cannot guarantee that the update will take
effect at a TTI boundary. The switch data plane has nanosecond-
scale latency, but it is not time-synchronized with the RU and PHY,
which are synchronized using the Precision Time Protocol (PTP).
Using packet header fields for timing. To address the time syn-
chronization issue, we observe that fronthaul packets have header
fields—the PHY-level frame, subframe, and slot number—that iden-
tify the TTI at which the packet was generated. Our in-switch
middlebox parses these headers and uses them as triggers to update
the RU-to-PHY mapping.
Indirect data structure for RU-to-PHYmap. The next challenge
is to design a data structure that can be updated in the switch data
plane upon receiving a fronthaul packet matching the migration
TTI. An intuitive data structure for this purpose is a hash table.
However, implementing a general-purpose data plane-updatable
48-bit MAC-to-MAC address mapping (or 32-bits for IP-based fron-
thauls [31]) is complex, since it requires a full-fledged hash table
that handles hash collisions, which is not supported by today’s
programmable switches. Instead, we introduce an indirection layer
to create a collision-free keyspace: We observe that typical vRAN
datacenters handle at most a few hundred RUs and PHYs, so we
can rely on logical RU and PHY IDs assigned by vRAN operators at
installation time. For a datacenter with 256 RUs and PHY processes,
eight-bit IDs suffice.

Taking uplink as the example, the switch forwards fronthaul
packets as follows: When the switch receives a packet from an
RU, it first retrieves the RU’s ID by looking up the ID directory
(Key: RU’s MAC address, Value: RU ID). Next, it looks up the RU-
to-PHY mapping with the retrieved RU ID to get a PHY ID, and
forwards the packet to the PHY’s MAC address retrieved from the
address directory (Key: PHY ID, Value: PHY’s MAC address). For
downlink packets, the switch additionally drops packets that are
not addressed from the currently active PHY for the destination RU
to avoid unexpected behaviors.
Controlling fronthaul migration. Our software FAPI middle-
box (§6) controls PHY migration by sending a migrate_on_slot
command packet to the switch. This packet contains a future slot
number to migrate the PHY processing at, the RU ID, and the PHY
server ID to remap this RU to. On receiving this command, the
switch stores the command in its migration request store (Figure 5).

Resilient Baseband Processing in Virtualized RANs with Slingshot ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

On receiving a fronthaul packet, the switch retrieves the packet’s
RU ID, and compares the packet’s slot number with any stored
migration requests for this RU. If they match, the switch data reads
the PHY’s server ID from the migration request and re-maps the
RU to this server ID in the RU-to-PHY mapping. This establishes
the new mapping and starts routing fronthaul packets to/from the
new PHY process.

5.2 In-switch RAN failure detection
Until now, we have assumed that resilience events are instantly
detected and trigger PHY migration. While this is straightforward
for planned migrations, it is challening to detect PHY failures in
a way that satisfies our requirements. Doing so requires a failure
detector that (1) works transparently without RAN modifications,
(2) detects failures rapidly to minimize dropped TTIs, and (3) has
low CPU overhead.

Recent sub-ms failure detection approaches fail to meet these
requirements. These approaches, such as those used by FARM [38],
Mu [27], and X-Lane [46], use periodic heartbeat messages between
a failure detector and the target service. Using such approaches
would require modifying the PHY to add heartbeats, as well as
dedicating overhead CPU cores for realtime lease message pro-
cessing. We design a novel technique to transparently detect PHY
failures (assuming a fail-stop model), running on our in-switch
fronthaul middlebox. Additionally, the technique works generally
for detecting the failure of any networked realtime vRAN layer.

5.2.1 Using realtime packets streams as heartbeats. Our key obser-
vation is that a healthy realtime vRAN layer sends packets in every
TTI to the layer above or below it. These can be used as a natural
heartbeat to detect failure for this layer. A healthy PHY—which
we target in Slingshot—sends a downlink control plane fronthaul
packet to the RU in every TTI, which the in-switch fronthaul mid-
dlebox can observe. All realtime vRAN layers emit such TTI-spaced
packet streams: the RU emits fronthaul packets, the MAC emits
FAPI packets, and the RLC emits RLC Protocol Data Units (PDUs).
In our testbed, we measure the maximum inter-packet gap between
downlink fronthaul packets to be 393 µs (§8.6).

5.2.2 In-switch inter-packet gap monitoring. We design our PHY
failure detection engine as part of our switch data plane, which
monitors the inter-packet gap between the PHY’s downlink pack-
ets. Since today’s programmable switches lack timers, we emulate
timer ticks by using the programmable switch’s packet generator to
generate 𝑛 packets in every timeout period 𝑇 . To emulate timeout
events, we maintain per-PHY counters. Each downlink packet from
a PHY sets its counter to 0, and each timer packet reads and incre-
ments the counter by 1. When a PHY fails, its counter reaches 𝑛
after 𝑛 timer ticks. The next timer packet detects this PHY’s failure
by observing the saturated counter.

The parameter 𝑛 governs the worst-case precision at which the
switch matches the timeout value 𝑇 . We empirically set 𝑇 to 450 µs
(Section 8.6) and𝑛 to 50, which gives us 9 µs precision and negligible
switch overhead (50K packets per second).

Once a timer packet detects the PHY’s failure, the switch re-
formats it into a failure notification packet and forwards it to our
software FAPI middlebox (§6) for this PHY. On receiving the failure

notification, the FAPI middlebox initiates the migration process
and sends a migrate_on_slot command to the switch to trigger
fronthaul migration.

6 ORION: L2-TO-PHY MIDDLEBOX
While it may seem that PHYmigration can be achieved bymanaging
only the fronthaul traffic between the RUs and primary/secondary
PHYs using our fronthaul middlebox, this by itself is incomplete for
two main reasons. First, the L2 and higher layers are not designed
to allow secondary PHYs, and therefore require changes to the L2
software to realize the above approach. Second, even if these layers
could deal with secondary PHYs, naïvely maintaining a secondary
PHY causes high CPU overhead.

To address these challenges, we design Orion, a new middlebox
process that acts as a shim layer between the L2 and PHY and
enables efficient and transparent PHY migration. For efficiency,
it maintains a hot standby secondary PHY with low CPU over-
head during normal operation, and connects it to the L2 on PHY
migration. For transparency, it interposes on FAPI protocol (§2.2)
messages between the L2 and PHY. Since FAPI constitutes a “nar-
row waist” interface between different implementations of both
the L2 and PHY, our design can support a variety of L2 and PHY
implementations (e.g., GPUs [21] and DSPs [22]).

We term the Orion process pairing with a PHY or L2 as a “PHY-
side” or “L2-side” Orion, respectively. Orion handles multiple RUs
that map to the L2 or PHY processes that it peers with. It supports
scenarios where the RU’s primary PHY processing runs on the same
server as the L2 to minimize overhead, though we focus only on
the case where L2 and PHY are fully decoupled in this paper.

In the following, we describe how Orion decouples L2 and PHY
over Ethernet (§6.1), how it maintains a hot standby secondary PHY
with low CPU overhead (§6.2), and how it manages PHY migration
(§6.3).

6.1 Stateless inter-Orion transport
Although there are established protocols such as nFAPI (i.e., net-
worked FAPI) that decouple the PHY and L2 over a wired network,
we found them mismatched for Orion’s use case. Originally de-
signed for small cells, nFAPI targets L2-PHY communication over
a unreliable and slow city-area network. Therefore, it supports
features such as reliable transmission using a complex stateful
communication protocol (SCTP) and synchronization adjustments,
which we do not need.

In contrast with nFAPI’s target use case, the PHY and L2 lay-
ers in our target vRAN deployments run in the same edge data-
center with a reliable, low-latency network (e.g., 100GbE). This
allows Orion processes to use a lean network protocol with no
inter-slot state to communicate with each other, making it possible
to migrate PHY processing at TTI boundaries to a different server
without migrating Orion’s state. Packet losses in our target edge
datacenters are extremely rare since vRAN datacenter operators
statically provision the required Ethernet bandwidth, and there are
no congestion-inducing incast-like situations. When rare packet
losses occur, Orion discards the FAPI messages for the slot and
injects an “null” FAPI message to its L2/PHY peer (§6.2).

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Lazarev and Ji et al.

S
lo

t 8
6

S
lo

t 8
5

Initialize primary PHY
L2 Orion

Initialize secondary PHY

Requests for primary PHY

Null requests for secondary PHY

Responses from primary PHY

Responses from secondary PHY

Requests for secondary PHY

Null requests for primary PHY

Response from secondary PHY

Response from primary PHY

Figure 6: Simplified example of Orion’s middlebox actions,
showingmigration of an RU from primary to secondary PHY
at the TTI boundary between slots 85 and 86. The dashed
lines show FAPI messages generated or filtered by Orion.

Orion transparently decouples the SHM-coupled L2 and PHY
over the datacenter network as follows. When an L2 (or PHY) pro-
cess attempts to connect to the PHY (or L2) over SHM, it connects
to Orion instead. When the L2 sends a FAPI message to the PHY,
the “L2-side Orion” receives the message over SHM, and forwards it
to the Orion process at the server running the PHY. The “PHY-side
Orion” receives the FAPI message over the datacenter network and
forwards it to its peer PHY process over SHM. The PHY-to-L2 path
works similarly in the reverse direction. Orion’s design is agnostic
to the physical FAPI channel (e.g., SHM, nFAPI, or even PCIe-based
channels).

6.2 Null FAPIs for efficient secondary PHY
What are the challenges in maintaining a hot standby secondary
PHY with low overhead, i.e., without scheduling real signal pro-
cessing work to it? A naïve approach is to simply duplicate all FAPI
messages sent by the L2 to the primary PHY. This however results
in a large CPU overhead for the secondary PHY, since it now dupli-
cates the primary’s signal processing work. An intutive approach
of simply not sending FAPI messages to the secondary PHY does
not work, because the FAPI specification requires that a PHY must
receive valid FAPI work requests in every slot. For example, our
PHY (FlexRAN) crashes if it does not receive these requests, which
is valid PHY behavior.

We solve this challenge by introducing the concept of “null”
FAPI messages. Per the FAPI specification, a PHY must receive
uplink and downlink configuration FAPI requests (UL_CONFIG and
DL_CONFIG) in every slot, specifying the uplink and downlink signal
processing work for that slot, respectively. These requests include
information such as the set of active UEs, the frequency resources
and modulation scheme used by each UE, etc.

Our insight is that “null” versions of UL_CONFIG and DL_CONFIG
requests are valid inputs to the PHY; Slingshot uses such requests
to keep the secondary PHY alive. A null request has no UE en-
tries, indicating that the PHY needs to do no uplink or downlink

signal processing for this slot. The PHY generates no significant
computational work for null requests; we quantify this in §8.7.

Figure 6 shows how Orion uses null requests for an example
slot 85. When the L2 sends requests to the primary PHY, Orion
intercepts them and sends unmodified and null requests to the
primary and the secondary PHYs, respectively. Both PHYs subse-
quently send responses to the L2. The L2-side Orion forwards only
the primary PHY’s responses to the L2, dropping the secondary’s
responses.

6.3 Managing PHY migration
Orion provides the initialization, management and control needed
for PHY migration:
Initializing the secondary PHY. Orion needs a way to spawn a
secondary PHY without understanding the complex details of PHY
initialization. When the L2 onboards a new RU, it tries to initialize
PHY processing for this RU in an existing PHY process by sending
it a FAPI initialization request. The L2-side Orion intercepts this
initialization request and stores a duplicate copy of the request. It
chooses two servers for the primary and secondary PHY, based on
cluster configuration information from Orion’s management thread.
It then sends one initialization message to the PHY-side Orion
processes running on the two chosen remote servers. At this time,
the two servers may already be handling primary or secondary PHY
processing for other RUs. Each PHY process receives initialization
messages from its Orion peer (the “PHY-side Orion”), and initializes
PHY processing for the new RU. The stored initialization messages
can be used to initialize additional secondary PHYs after the primary
fails.
Migration to the secondary PHY. The L2-side Orion initiates
migration for the RUs that map to its peer L2; this can be controlled
by an external controller or by a manual operator. It does so by (1)
switching the PHY with which it exchanges original and null FAPI
requests and responses (slot 86 in Figure 6), and (2) triggering the
fronthaul migration by sending a migrate_on_slot command to
the fronthaul middlebox (§5.1). For simplicity, we designate Orion as
an exclusive initiator of PHYmigration, i.e., the fronthaul middlebox
simply executes migration at the slot requested by Orion.

7 IMPLEMENTATION
In-switch fronthaul middlebox. The data plane components
written in P4-16 consist of the RU ID and PHY address directory
implemented using match-action tables; and the migration request
store and the RU-to-PHY mapping implemented using P4 registers.
We implement the switch control plane in Python using the Barefoot
Runtime APIs, which initializes the above data structures.
In-switch PHY failure detector. The PHY failure detector is im-
plemented as part of our fronthaul middlebox. To emulate timer
ticks, we configure Tofino’s built-in packet generator to periodi-
cally inject packets into the switch data plane using the Barefoot
Runtime APIs. We implement the per-PHY timeout counters using
P4 registers.
Orion middlebox. We implement Orion and all corresponding
FAPI transformations in 8850 lines of C++. For low latency, we use a
UDP-based userspace transport implemented using DPDK [8] with

Resilient Baseband Processing in Virtualized RANs with Slingshot ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

… …

Slots

L2

Primary
PHY

Secondary
PHY

3 3 3

Migration boundary

2

2 2 2

3 … …

Figure 7: Visualization of pipelined slot processing in Orion.

Radio unit Foxconn 4x4 RU; 100MHz at 3.5GHz
UEs Raspberry Pi; OnePlus N10 and Samsung A52s
PTP grandmaster Qulsar QG2 multi-sync gateway

Servers (3×) HPE Telco DL110; Xeon 6338N CPU
Accelerator Intel ACC100 for LDPC coding
Ethernet NIC Intel E810 100GbE NIC
Ethernet switch Tofino-based Arista 7170 P4 switch

Operating system Realtime Linux kernel 5.15
PHY software Intel FlexRAN v20.11, v21.03, v21.11
L2+ software CapGemini 5G Solution, Intel testmac
5G core Metaswitch’s Fusion Core

Table 1: Testbed hardware and software configuration.

busy-polling. Note that since the vRAN L1-L2 interface operates at a
much lower data rate than the capabilities of the modern datacenter
networks, we have not yet fully optimized Orion’s performance.
Pipelined slot processing in Orion. Section 6 presents a sim-
plified view where all the processing for a slot happens within
the slot duration. Real PHY implementations, such as FlexRAN
and srsRAN [17] are more complex: they use a pipeline of tasks
to process a slot. As an example, Figure 7 shows FlexRAN’s three-
slot uplink processing pipeline. Assuming that the PHY migration
happens at the slot #2–#3 boundary, the primary PHY will keep pro-
ducing uplink data for slot #2 even after migration. Orion continues
to accept this data to minimize the number of dropped TTIs. This
helps Slingshot provide lower UE downtime for the more frequent
planned migrations compared to failovers (§8.2).

8 EVALUATION
We evaluate Slingshot on a state-of-the-art 5G vRAN testbed with
hardware and software that closely resembles the majority of real
vRAN deployments [9, 23, 24] (Table 1). We use a four-antenna RU
with 100MHz bandwidth and 30 KHz subcarrier spacing (i.e., 500 µs
TTIs). The cell operates in time-division duplexing (TDD) mode
with a “DDDSU” slot format, i.e., three DL slots followed by one UL
slot, with a shared/guard slot in between. We use three different
types of commercial UEs.

Our testbed has three servers in a rack, connected via a 100GbE
programmable switch. We use two servers to run the primary PHY
and the hot secondary PHY, and a different server to run the vRAN’s
L2+ layers. In real deployments, Slingshot will co-locate primary
and secondary PHYs for different RUs within PHY processes, i.e.,
our design does not require dedicated servers to run just secondary
PHYs. We use unmodified commercial RAN and 5G core software,
showing our design’s transparency and interoperability.

We first present our end-to-end evaluations, and then present
microbenchmarks for our two middleboxes.

0 2 4 6 8 10 12
Time (s)

0

200

400

600

Av
g

bi
tra

te
 (k

bp
s)

No failure
Failure w/o Slingshot
Failure w/ Slingshot

Figure 8: Downlink bitrate in videoconferencing with pri-
mary PHY failure within the third second.

8.1 Reliable videoconferencing
Experiment setup. We first show how Slingshot PHY’s failure
recovery retains the user’s quality of experience (QoE) for live video
conferencing, which is a latency-critical application where the QoE
is critical. Our video sender streams a compressed talking-head
video to the UE at a target bitrate of 500 Kbps. We measure the
average video bitrate on the receiver since it correlates with QoE
and time to recovery [45, 53, 74]. We compare changes in the video
bitrate in three scenarios: (1) no failure, (2) PHY failure without
Slingshot (baseline), and (3) PHY failure with Slingshot.
Baseline. Our failover baseline that demonstrates the lack of re-
silience in today’s vRANs works as follows: We run an entire vRAN
stack (i.e., the PHY layer through the Packet Data Convergence
Protocol layer) as a hot backup vRAN on a separate server, with the
same configuration as the primary vRAN. Since today’s vRANs lack
fast failure detection and fronthaul management, when the primary
vRAN’s PHY fails, we use our fronthaul middlebox to detect it and
re-route the fronthaul to the secondary vRAN’s PHY.
Results. Figure 8 shows the video bitrate on the downlink. The
uplink results are similar and thus omitted. Without Slingshot, the
UE fully disconnects from the network and takes 6.2 seconds to
reattach; the video bitrate is zero during this time, incurring signifi-
cant QoE loss. The 6.2 seconds are spent in re-establishing a broken
connection with the core network, and match prior measurements
(e.g., 5 seconds in a field report by Qualcomm [60]). By contrast,
Slingshot keeps the bitrate steady by transparently resolving the
PHY failure. We note that Slingshot supports higher video bitrates:
later in Figure 12, we show that Slingshot can handle 3.4Gbps of
user traffic.

8.2 End-to-end benchmarks
We next present end-to-end benchmarks to show that Slingshot
meets our availability target of sub-10ms connectivity disruption
during PHY failures (§2.3). Our experiments focus on PHY failover
where the secondary PHY acts as a backup, since these are more
challenging than planned migrations.
Comparison with VMmigration. Compared to VM migration-
based PHY resilience approaches that can drop several hundred
milliseconds of TTIs (Figure 3), Slingshot reduces the number of
dropped TTIs by two orders of magnitude to at most three TTIs:
If a PHY fails towards the end of over-the-air slot N, our switch
middlebox will trigger a timeout after 450 µs (§5.2), i.e., towards the

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Lazarev and Ji et al.

 40

 45

 50

 55

 60

 65

52.8 53.0 53.2 53.4 53.6 53.8 54.0 54.2

Primary PHY Backup PHY

P
in

g
 la

te
n
cy

 (
m

s
)

Seconds

OnePlus 10
Samsung A52
Raspberry Pi

Figure 9: Ping latency with primary PHY failure 𝑡 =53.546ms.
The Y-axis starts at 40ms. The transient disruption from
failover resembles natural wireless fluctuations.

end of slot N+1. It then takes tens of microseconds for the L2-side
Orion to receive and react to the switch’s failure notification packet,
possibly impairing the processing of slot N+2.

Latency impact of PHY failure.We use three UEs simultaneously
and measure the ping latency from the UEs to the application server
at 10ms intervals. We trigger failover by manually terminating the
primary PHY with a SIGKILL signal. We record the PHY failure
time as the time when the L2-side Orion receives a notification
about the PHY’s failure from the switch middlebox.

Figure 9 shows the latency for each UE. To illustrate how the UE
performance degradation during PHY migration resembles natural
wireless signal impairments, we plot the ping latency for a ≈2 s
period centered at the failure time, with 10ms between pings. (We
show results for shorter timescales in other experiments.) While the
latency of two UEs (the OnePlus N10 and the Raspberry Pi) remains
unaffected during migration, the latency of the Samsung A52s
suffers a 15ms spike. However, this resembles routine performance
fluctuations, seen in the plot’s far left and right.

Downlink throughput during failover. To measure the effect
of Slingshot’s PHY failover on downlink throughput, we use iperf
to send downlink traffic from an application server to the UE. We
use a single UE in this experiment to measure the throughput in an
isolated setting. Figure 10a shows the throughput measured at the
UE, reported every 10ms, zoomed and centered at the failure time.
We perform two separate measurements with TCP and UDP traffic.
We find that Slingshot preserves the downlink connection without
noticeable degradation in UE throughput.

Uplink throughput during failover. Figure 10b shows results
from a similar experiment as above, but for uplink throughput
measured at the application server. We observe that after the failure,
UDP throughput drops from around 15.8Mbps to 7.4Mbps, but
recovers to 15.8Mbps within 20ms. Importantly, the UE retains
connectivity for all 10ms intervals, meeting our availability target.
TCP’s in-order delivery requirement makes its throughput more
sensitive to the packets lost during PHY failure: throughput drops to
zero for 80ms and recovers fully 110ms after PHY failure. However,
the application server keeps receiving TCP packets for much of
the 80ms of period: its throughput jumps to 157Mbps (cut off from
Figure 10) when it finally receives the lost packets retransmitted
by the UE’s TCP stack. Note that we observe the drop only during

 0

 40

 80

 120

 160

 0 50 100 150 200 250 300T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Milliseconds

TCP UDP

(a) Downlink throughput

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Milliseconds

TCP, failover
TCP, planned migration

UDP, failover

(b) Uplink throughput

Figure 10: TCP and UDP throughput changes during re-
silience events, at 𝑡 =150ms and 250ms, respectively.

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6 7 8 9 10

Before upgrade After upgrade

T
h
ro

u
g
h
p
u
t
(M

b
p
s)

Seconds

OnePlus 10
Samsung A52
Raspberry Pi

Figure 11: Uplink UDP bandwidth achieved by three UEs
before (white) and after (gray) a PHY upgrade.

failover; in case of planned migrations (dashed line in Figure 10b),
there is no drop.

8.3 Live PHY upgrades
To demonstrate Slingshot’s usefulness for live upgrades, we emu-
late a scenario where the upgraded PHY has better Forward Error
Correction (FEC), which improves its signal decoding success rate.
Such performance upgrades are common in practice and today they
require pre-planned maintenance windows, which Slingshot can
eliminate. We emulate the upgrade by configuring the secondary
(new) PHY to use more FEC iterations for decoding the signal.
Figure 11 shows that before the upgrade, the two phones get low
throughput, with the Raspberry Pi getting an unfairly high share.
After the upgrade, the phones’ throughput improves and the UEs
share the available bandwidth more evenly. The upgrade completes
without network downtime.

Resilient Baseband Processing in Virtualized RANs with Slingshot ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Metric 1/s 10/s 20/s 50/s
#10ms blackout intervals 0 0 0 11
Min tput (Mbps) per 10ms 4.2 3.2 2.1 0
Max tput (Mbps) per 10ms 18 18 18 18
Max pkt loss rate per 10ms 50% 62% 67% 100%

Interrupted HARQ seqs over 60 s 0 67 118 315
Avg. UDP pkt loss rate over 60 s 0.1% 0.46% 1.6% 3.9%

Table 2:Metrics for anuplinkUDPflowduring a stress test for
discarding PHY state, with PHYmigration rates between 1mi-
gration/s (“1/s”) and 50migrations/s. Slingshotmaintains sub-
10ms network downtime with even 20 migrations/second,
which includes 118 broken HARQ sequences.

8.4 Stress test for discarding PHY state
We run the following stress test to validate our hypothesis that
discarding inter-TTI PHY state such as HARQ buffers (§4) during
resilience events does not result in network downtime longer than
our 10ms target. We perform multiple PHY migrations between
the two PHY servers at extreme rates of tens of migrations/second,
for a measurement period of 60 seconds. Table 2 shows several
metrics for an uplink UDP flow from the UE to the application
server during the experiment. Even with a migration every 50ms
(i.e., 20 migrations/s), Slingshot keeps the network downtime below
10ms by providing at least 2Mbps uplink throughput for any 10ms
duration. In the 20 migrations/second case, we observe 118 HARQ
sequences that coincide with the slot that Slingshot chooses for
PHY migration, yet we find no prolonged network downtime. This
experiment convincingly shows how discarding inter-slot PHY state
is safe, and that Slingshot co-exists with multi-TTI operations such
as HARQ.

For downlink transmissions, the vRAN’s PHY does not maintain
HARQ buffers, but PHY migration may cause HARQ acknowledg-
ments sent by the UE’s MAC to be dropped. The impact of such
impairments is small: our experiment with a 100Mbps downlink
UDP transfer with even 20 migrations/second showed a worst-case
reduction of under 20% in downlink throughput measured by the
UE at 10ms intervals.

8.5 Overhead of secondary PHYs
What are the overheads of maintaining a hot inactive secondary
PHY (§6.2)? To estimate the CPU cost for a secondary PHY, we
measure the marginal cost of adding the PHY to a server that is
already running one primary PHY. We find that our use of null
FAPI requests makes the PHY compute overhead of secondary PHYs
negligible: FlexRAN reports no significant increase in its CPU or
FEC accelerator usage. There is no L2 overhead, since Slingshot does
not expose the secondary PHY to the L2. The datacenter network
overhead is also negligible, e.g., Orion’s null FAPI messages use
under 1MBps on our 100GbE inter-server links.

8.6 Switch microbenchmarks
We measure the amount of switch ASIC resources used by Sling-
shot’s dataplane for a large edge datacenter configuration that
serves 256 RUs with 256 vRAN servers (most vRAN deployments
are smaller, e.g., the O-RAN’s cloud architecture paper targets 64

 0

 100

 200

Idle 100 Mbps 1.1 Gbps 2.8 Gbps 3.4 Gbps

L
a
te

n
cy

 (
u

s)

median 99th 99.999th

Figure 12: One-way latency added by Orion for different
downlink user throughputs.

RUs [7]). The fraction of each switch resource used is small, includ-
ing crossbar (5.2%), ALU (10.4%), gateway (14.1%), SRAM (5.3%),
and hash bits (9.5%). Supporting more RUs/PHYs increases only
SRAM usage.
Inter-packet gap. To choose a timeout value for Slingshot’s switch-
based failure detector, we measure the maximum inter-packet gap
between a healthy PHY’s downlink packets (§5.2).We collect switch’s
ingress timestamps for downlink packets with a P4 program that
prepends a nanosecond-precision timestamp to each downlink
packet, and then mirrors the packet to a server for analysis. The an-
alyzer computes the inter-packet gap statistics using the collected
timestamps. We measure the maximum inter-packet gap across all
idle and busy cases to be 393 µs, so we choose a conservative switch
timeout of 450 µs for the failure detector.

8.7 Orion microbenchmarks
Orion’s FAPI transformations and SHM-to-UDP translation does
not noticeably increase latency for UEs. This is because the latency
of Orion’s intra-datacenter UDP transport (microseconds) is far
smaller than cellular network latency (milliseconds). We measure
the ping latency from our application server to the UE every 10ms.
This experiment runs the PHY on a single server (i.e., no migra-
tion); the L2 runs on a different server for the L2-PHY decoupled
configuration. The median latency both with and without Orion is
22.8ms, with a standard deviation of 0.8ms in both cases.

Figure 12 shows the one-way L2-to-PHY latency added by Orion
for different downlink throughputs, which typically exceed uplink
throughput by around 10x. The first two clusters show real testbed
measurements. To generate a higher load not currently possible in
our testbed, we use FlexRAN’s test-mode MAC to send traffic at up
to 3.4Gbps. We find that the latency added by Orion remains under
200 µs. FlexRAN budgets one TTI (slot 𝑁 − 3) for FAPI message
transfers for downlink slot N, and the latency added by Orion is
well under the 500 µs TTI budget.

9 RELATEDWORK
Systems support for vRANs. There is a growing body of work
that aims to improve vRAN robustness. Concordia [41] presents a
deadline scheduling framework that improves the vRAN’s ability
to co-exist with other workloads. The Nuberu project is the closest
in spirit to our work [42]: they propose a vRAN design that works
well in non-ideal settings on servers with high CPU interference.
These single-server resilience techniques can be combined with
Slingshot’s cross-server distributed techniques for better resilience.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Lazarev and Ji et al.

FSA [34] focuses on network slicing to better isolate different vir-
tual networks with different traffic patterns. It uses a programmable
switch to identify and route slices of fronthaul traffic at line rate.
FSA is complementary to our work, and Slingshot’s switch-based
fronthaul middlebox can be extended to support network slicing
based on FSA.

RU frontend–based techniques. Projects such as Picasso [44]
and Mendes et al. [54] provide a way to run multiple vRAN stacks
atop the same physical RU. These approaches can theoretically
serve similar goals as Slingshot. For example, the vRAN may broad-
cast two cells—a primary and a backup—from the same RU, with
the UEs attaching preferentially to the primary cell. Upon failure
of the primary’s vRAN, the UEs migrate to the backup cell. These
approaches are orthogonal to Slingshot, and further work is needed
to realize these ideas in real vRANs. For example, they require spe-
cial logic in the RUs, which is not possible with today’s commercial
radios that we target.

A cellular deployment can also mask the impact of PHY failures
from UEs by deploying cells with overlapping coverage, allowing
the UE to connect to a different RU in the vRAN backend. Such ap-
proaches have cost and applicability constraints, and are orthogonal
to our work.

Theoretical work on using dynamic RU-to-PHY mapping.
There is a large body of theoretical work on using dynamic RU-
to-PHY mappings to improve vRAN energy efficiency or QoS. Sig-
wele et al. [68] present an approach to bin-pack RUs to the fewest
servers during low load to improve LTE’s energy efficiency. Other
approaches optimize the mappings to improve metrics such as
dropped calls [30, 51, 63]; Rodoshi et al. [64] present a comprehen-
sive review. Due to the lack of systems support for dynamically
remapping RUs to PHYs, these projects evaluate their benefits only
in simulation; PHY migration addresses this gap.

10 FUTUREWORK

Higher vRAN layers. Our north star goal is to design resilience
approaches for all types of vRAN components; PHY migration
is a first step towards this goal. The different vRAN layers have
varied amounts of hard state, compute resource usage, and real-time
latency requirements. The PHY layer is at one extreme, with no hard
state, very high compute usage, and strict latency requirements.
The other extreme is vRAN layers above the L2, which lack real-
time latency requirements, and may be handled by VM migration
or state snapshotting approaches used successfully for the core
network [48, 56]. The L2 layers offer an interesting challenge, since
they have both hard state and real-time latency requirements. We
believe that we can build L2 migration by combining Slingshot’s
approach of discarding some state during migration, with recent
high-performance state preservation techniques like Zeus [47].

Massive MIMO. Our work focuses on small antenna configura-
tions that are currently the target for vRAN operators. vRAN oper-
ators are beginning to adopt massive MIMO configurations, though
software and RU support are currently nascent. Massive MIMO
PHYs use inter-slot state lasting tens to hundreds of slots for their
downlink precoding (i.e., beamforming) and uplink equalization
(e.g., zero-forcing) matrices [75]. We note that this is still soft state

that can be discarded without affecting correct PHY operation, al-
beit with a possibly larger impact on UE performance than our
experiments observe.

11 CONCLUSION
Resilience support for failovers and live upgrades is a key missing
part in today’s vRAN deployments. Slingshot takes the first step
towards resilient vRANs by building the required systems support
for migrating the vRAN’s most compute-intensive and latency-
sensitive PHY layer. The key insight that makes this work possible
is that imperfect migration matches the inherent imperfection of
cellular networks. We build upon this insight with a shim-layer ap-
proach for a transparent and lightweight PHYmigrationmechanism
with novel in-switch fronthaul and software FAPI middleboxes, as
well as an in-switch RAN failure detector. Our evaluations show
how Slingshot provides a resilient PHY in a state-of-the-art vRAN
testbed with unmodified commercial vRAN software and hardware,
migrating PHY processing between servers with only milliseconds
of UE service disruption. We believe that our insights and middle-
box designs will be fundamental building blocks for future resilient
vRANs.
Ethics: This work does not raise any ethical issues.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments
and constructive feedback. We thank Xenofon Foukas, Bozidar
Radunovic, Matthew Balkwill, Yongguang Zhang, and Victor Bahl
for their help and feedback on this project. This work was sup-
ported in part by NSF awards CNS-2203167 and CNS-2203152, NSF
CAREER award CCF-1846046, an Intel Rising Star Award, and an
Intel Focused Grant.

REFERENCES
[1] 2016. QEMU RDMA Live Migration. https://wiki.qemu.org/Features/

RDMALiveMigration
[2] 2020. Arista: 7170 Series Technical Specifications and Features. https://www.

arista.com/en/products/7170-series/specifications.
[3] 2020. iperf(1) - Linux man page. https://linux.die.net/man/1/iperf.
[4] 2020. QEMU - A generic and open source machine emulator and virtualizer.

https://www.qemu.org/.
[5] 2021. Altiostar and Rakuten Mobile Demonstrate Success Across Performance

and Scalability for Open RAN Network. https://www.altiostar.com/altiostar-and-
rakuten-mobile-demonstrate-success-across-performance-and-scalability-for-
open-ran-network/.

[6] 2021. CapGemini 5G gNodeB. https://capgemini-engineering.com/nl/en/services/
next-core/wireless-frameworks/.

[7] 2021. Cloud Architecture and Deployment Scenarios for O-RAN Virtualized RAN.
https://www.o-ran.org/specifications.

[8] 2021. Data Plane Development Kit (DPDK). http://dpdk.org/.
[9] 2021. Deutsche Telekom lights open RAN test site. https://www.mobileworldlive.

com/featured-content/top-three/dt-openran-testbed/.
[10] 2021. FlexRAN™ Reference Architecture for Wireless Access. https:

//www.intel.com/content/www/us/en/developer/topic-technology/edge-
5g/tools/flexran.html.

[11] 2021. Kernel Virtual Machine. https://www.linux-kvm.org/page/Main_Page.
[12] 2021. O-RAN Alliance: Operator Defined Open and Intelligent Radio Access

Networks. https://www.o-ran.org/.
[13] 2021. O-RAN Hardware Reference Design Specification for Indoor Pico Cell with

Fronthaul Split Option 6. https://www.o-ran.org/specifications.
[14] 2021. O-RAN: Towards an Open and Smart RAN. https://www.o-ran.org/s/O-

RAN-WP-FInal-181017.pdf.
[15] 2021. P416 Language Specification. https://p4.org/p4-spec/docs/P4-16-v1.2.0.

html.
[16] 2021. Radisys 5G NR Software Suite. https://www.radisys.com/connect/

connectran/5g.

https://wiki.qemu.org/Features/RDMALiveMigration
https://wiki.qemu.org/Features/RDMALiveMigration
https://www.arista.com/en/products/7170-series/specifications
https://www.arista.com/en/products/7170-series/specifications
https://linux.die.net/man/1/iperf
https://www.qemu.org/
https://www.altiostar.com/altiostar-and-rakuten-mobile-demonstrate-success-across-performance-and-scalability-for-open-ran-network/
https://www.altiostar.com/altiostar-and-rakuten-mobile-demonstrate-success-across-performance-and-scalability-for-open-ran-network/
https://www.altiostar.com/altiostar-and-rakuten-mobile-demonstrate-success-across-performance-and-scalability-for-open-ran-network/
https://capgemini-engineering.com/nl/en/services/next-core/wireless-frameworks/
https://capgemini-engineering.com/nl/en/services/next-core/wireless-frameworks/
https://www.o-ran.org/specifications
http://dpdk.org/
https://www.mobileworldlive.com/featured-content/top-three/dt-openran-testbed/
https://www.mobileworldlive.com/featured-content/top-three/dt-openran-testbed/
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
https://www.linux-kvm.org/page/Main_Page
https://www.o-ran.org/
https://www.o-ran.org/specifications
https://www.o-ran.org/s/O-RAN-WP-FInal-181017.pdf
https://www.o-ran.org/s/O-RAN-WP-FInal-181017.pdf
https://p4.org/p4-spec/docs/P4-16-v1.2.0.html
https://p4.org/p4-spec/docs/P4-16-v1.2.0.html
https://www.radisys.com/connect/connectran/5g
https://www.radisys.com/connect/connectran/5g

Resilient Baseband Processing in Virtualized RANs with Slingshot ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

[17] 2021. SRS: Software Radio Systems. https://www.srs.io/.
[18] 2021. vSphere Performance Equivalent to Bare Metal for RAN Work-

loads. https://telco.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/
microsites/telco/vmware-telco-ran-performance-wp.pdf.

[19] 2022. 5G FAPI: PHY API specification. https://www.smallcellforum.org/reports/
5g-fapi-phy-api-specification.

[20] 2022. 5G nFAPI specifications. https://www.smallcellforum.org/reports/5g-nfapi-
specifications.

[21] 2022. NVIDIA Aerial SDK: Build and Deploy GPU-Accelerated 5G Virtual Radio
Access Networks (vRAN). https://developer.nvidia.com/aerial-sdk.

[22] 2022. Qualcomm Introduces New 5G Distributed Unit Accelerator Card to
Drive Global 5G Virtualized RAN Growth. https://www.qualcomm.com/news/
releases/2021/06/qualcomm-introduces-new-5g-distributed-unit-accelerator-
card-drive-global.

[23] 2022. Rakuten Symphony Symware™ Phase Two Begins with Plans to Commer-
cially Deploy 30,000 Units in Japan. https://symphony.rakuten.com/newsroom/
rakuten-symphony-symware-phase-two-begins.

[24] 2022. The Journey to a Cloud-native, Fully Software-defined vRAN Architec-
ture. https://www.vodafone.com/sites/default/files/2022-12/journey-to-cloud-
native-fully-software-defined-vran-architecture.pdf.

[25] 2022. Verizon deploys more than 8,000 VRAN cell sites, rapidly marches towards
goal of 20,000. https://www.verizon.com/about/news/verizon-deploys-more-
8000-vran-cell-sites.

[26] 2022. Vodafone turns on first U.K. 5G open RAN site. https://www.fiercewireless.
com/tech/vodafone-turns-first-uk-5g-open-ran-site.

[27] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J. Marathe,
Athanasios Xygkis, and Igor Zablotchi. 2020. Microsecond Consensus for
Microsecond Applications. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). USENIX Association, 599–616. https:
//www.usenix.org/conference/osdi20/presentation/aguilera

[28] Kazi Main Uddin Ahmed, Manuel Alvarez, and Math H. J. Bollen. 2020. Char-
acterizing Failure and Repair Time of Servers in a Hyper-scale Data Center. In
IEEE PES Innovative Smart Grid Technologies Europe, ISGT Europe 2020, Delft, The
Netherlands, October 26-28, 2020. IEEE, 660–664. https://doi.org/10.1109/ISGT-
Europe47291.2020.9248891

[29] Jesutofunmi Ademiposi Ajayi. 2019. Live eNodeB Container Migration in LTE
Mobile Networks. Master’s thesis. University of Bern.

[30] Sally R. Aldaeabool and Maysam F. Abbod. 2017. Reducing power consumption
by dynamic BBUs-RRHs allocation in C-RAN. In 2017 25th Telecommunication
Forum (TELFOR). 1–4. https://doi.org/10.1109/TELFOR.2017.8249289

[31] ORAN Alliance. 2022. Control, user and synchronization plane specification.
O-RAN Fronthaul Working Group, ORAN-WG4.CUS.0-v10.00 (2022).

[32] M. Baker-Harvey. 2015. Google Compute Engine uses Live Migra-
tion technology to service infrastructure without application downtime.
https://cloudplatform.googleblog.com/2015/03/Google-Compute-Engine-uses-
Live-Migration-technology-to-service-infrastructure-without-application-
downtime.html

[33] Robert Birke, Ioana Giurgiu, Lydia Y. Chen, Dorothea Wiesmann, and Ton Eng-
bersen. 2014. Failure Analysis of Virtual and Physical Machines: Patterns, Causes
and Characteristics. In 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. 1–12. https://doi.org/10.1109/DSN.2014.18

[34] Nishant Budhdev, Raj Joshi, Pravein Govindan Kannan, Mun Choon Chan, and
Tulika Mitra. 2021. FSA: Fronthaul Slicing Architecture for 5G Using Dataplane
Programmable Switches. Association for Computing Machinery, New York, NY,
USA, 723–735. https://doi.org/10.1145/3447993.3483247

[35] Yi Chen, Di Tang, Yepeng Yao, Mingming Zha, XiaoFeng Wang, Xiaozhong
Liu, Haixu Tang, and Dongfang Zhao. 2022. Seeing the Forest for the Trees:
Understanding Security Hazards in the 3GPP Ecosystem through Intelligent
Analysis on Change Requests. In 31st USENIX Security Symposium (USENIX
Security 22). USENIX Association, Boston, MA, 17–34. https://www.usenix.org/
conference/usenixsecurity22/presentation/chen-yi

[36] Josep Colom Ikuno, Martin Wrulich, and Markus Rupp. 2009. Performance and
modeling of LTE H-ARQ. International ITG Workshop on Smart Antennas (WSA
2009) (01 2009).

[37] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman
Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow,
James Alexander Docauer, Jesse Alpert, Jing Ai, Jon Olson, Kevin DeCabooter,
Marc de Kruijf, Nan Hua, Nathan Lewis, Nikhil Kasinadhuni, Riccardo Crepaldi,
Srinivas Krishnan, Subbaiah Venkata, Yossi Richter, Uday Naik, and Amin Vah-
dat. 2018. Andromeda: Performance, Isolation, and Velocity at Scale in Cloud
Network Virtualization. In 15th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 18). USENIX Association, Renton, WA, 373–387.
https://www.usenix.org/conference/nsdi18/presentation/dalton

[38] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. No Compro-
mises: Distributed Transactions with Consistency, Availability, and Performance.
In Proceedings of the 25th Symposium on Operating Systems Principles (Monterey,

California) (SOSP ’15). Association for Computing Machinery, New York, NY,
USA, 54–70. https://doi.org/10.1145/2815400.2815425

[39] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. 2016. Maglev: A Fast and Reliable Software Network Load
Balancer. In 13th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 16). USENIX Association, Santa Clara, CA, 523–535. https:
//www.usenix.org/conference/nsdi16/technical-sessions/presentation/eisenbud

[40] Kevin Fall, Gianluca Iannaccone, Maziar Manesh, Sylvia Ratnasamy, Katerina
Argyraki, Mihai Dobrescu, and Norbert Egi. 2011. RouteBricks: Enabling General
Purpose Network Infrastructure. SIGOPS Oper. Syst. Rev. 45, 1 (2011). https:
//doi.org/10.1145/1945023.1945037

[41] Xenofon Foukas and Bozidar Radunovic. 2021. Concordia: teaching the 5G vRAN
to share compute. In ACM SIGCOMM 2021 Conference, Virtual Event, USA, August
23-27, 2021, Fernando A. Kuipers and Matthew C. Caesar (Eds.). ACM, 580–596.
https://doi.org/10.1145/3452296.3472894

[42] Gines Garcia-Aviles, Andres Garcia-Saavedra, Marco Gramaglia, Xavier Costa-
Perez, Pablo Serrano, and Albert Banchs. 2021. Nuberu: Reliable RAN Virtu-
alization in Shared Platforms. In Proceedings of the 27th Annual International
Conference on Mobile Computing and Networking (New Orleans, Louisiana) (Mo-
biCom ’21). Association for Computing Machinery, New York, NY, USA, 749–761.
https://doi.org/10.1145/3447993.3483266

[43] Ahmad Hassan, Arvind Narayanan, Anlan Zhang, Wei Ye, Ruiyang Zhu, Shuowei
Jin, Jason Carpenter, Z. Morley Mao, Feng Qian, and Zhi-Li Zhang. 2022. Vivi-
secting Mobility Management in 5G Cellular Networks. In Proceedings of the
ACM SIGCOMM 2022 Conference (Amsterdam, Netherlands) (SIGCOMM ’22).
Association for Computing Machinery, New York, NY, USA, 86–100. https:
//doi.org/10.1145/3544216.3544217

[44] Steven S. Hong, Jeffrey Mehlman, and Sachin Katti. 2012. Picasso: Flexible RF
and Spectrum Slicing. SIGCOMM Comput. Commun. Rev. 42, 4 (aug 2012), 37–48.
https://doi.org/10.1145/2377677.2377683

[45] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. 2015. A buffer-based approach to rate adaptation: Evidence from a large
video streaming service. ACM SIGCOMM Computer Communication Review 44, 4
(2015), 187–198.

[46] Patrick Jahnke, Vincent Riesop, Pierre-Louis Roman, Pavel Chuprikov, and Patrick
Eugster. 2021. Live in the Express Lane. In 2021 USENIX Annual Technical Confer-
ence (USENIX ATC 21). 581–595.

[47] Antonios Katsarakis, Yijun Ma, Zhaowei Tan, Andrew Bainbridge, Matthew
Balkwill, Aleksandar Dragojevic, Boris Grot, Bozidar Radunovic, and Yongguang
Zhang. 2021. Zeus: Locality-Aware Distributed Transactions. In Proceedings of
the Sixteenth European Conference on Computer Systems (Online Event, United
Kingdom) (EuroSys ’21). Association for Computing Machinery, New York, NY,
USA, 145–161. https://doi.org/10.1145/3447786.3456234

[48] Antonios Katsarakis, Zhaowei Tan, Matthew Balkwill, Bozidar Radunovic, An-
drew Bainbridge, Aleksandar Dragojevic, Boris Grot, and Yongguang Zhang.
[n.d.]. rVNF: Reliable, scalable and performant cellular VNFs in the cloud. Techni-
cal Report.

[49] Sean Kenney. [n.d.]. Breaking down the pros of Open RAN. https://www.
rcrwireless.com/20200925/5g/breaking-down-the-pros-of-open-ran.

[50] Junaid Khalid and Aditya Akella. 2019. Correctness and Performance for Stateful
Chained Network Functions. In USENIX NSDI (2019).

[51] M. Khan, R.S. Alhumaima, and H.S. Al-Raweshidy. 2015. Quality of Service
aware dynamic BBU-RRH mapping in Cloud Radio Access Network. In 2015
International Conference on Emerging Technologies (ICET). 1–5. https://doi.org/
10.1109/ICET.2015.7389166

[52] Yuanjie Li, Zengwen Yuan, and Chunyi Peng. 2017. A Control-Plane Perspective
on Reducing Data Access Latency in LTE Networks. In Proceedings of the 23rd
Annual International Conference on Mobile Computing and Networking (Snowbird,
Utah, USA) (MobiCom ’17). Association for Computing Machinery, New York,
NY, USA, 56–69. https://doi.org/10.1145/3117811.3117838

[53] Kyle MacMillan, Tarun Mangla, James Saxon, and Nick Feamster. 2021. Mea-
suring the performance and network utilization of popular video conferencing
applications. In Proceedings of the 21st ACM Internet Measurement Conference.
229–244.

[54] José Mendes, Xianjun Jiao, Andres Garcia-Saavedra, Felipe Huici, and Ingrid
Moerman. 2017. Cellular Access Multi-Tenancy through Small Cell Virtualization
and Common RF Front-End Sharing. 35–42. https://doi.org/10.1145/3131473.
3131474

[55] Arvind Narayanan, Eman Ramadan, Jason Carpenter, Qingxu Liu, Yu Liu, Feng
Qian, and Zhi-Li Zhang. 2020. A First Look at Commercial 5G Performance on
Smartphones. In Proceedings of The Web Conference 2020. 894–905.

[56] Binh Nguyen, Tian Zhang, Bozidar Radunovic, Ryan Stutsman, Thomas Kara-
giannis, Jakub Kocur, and Jacobus Van der Merwe. 2018. ECHO: A Reliable
Distributed Cellular Core Network for Hyper-Scale Public Clouds. In Proceedings
of the 24th Annual International Conference on Mobile Computing and Networking
(New Delhi, India) (MobiCom ’18). Association for Computing Machinery, New
York, NY, USA, 163–178. https://doi.org/10.1145/3241539.3241564

https://www.srs.io/
https://telco.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/microsites/telco/vmware-telco-ran-performance-wp.pdf
https://telco.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/microsites/telco/vmware-telco-ran-performance-wp.pdf
https://www.smallcellforum.org/reports/5g-fapi-phy-api-specification
https://www.smallcellforum.org/reports/5g-fapi-phy-api-specification
https://www.smallcellforum.org/reports/5g-nfapi-specifications
https://www.smallcellforum.org/reports/5g-nfapi-specifications
https://developer.nvidia.com/aerial-sdk
https://www.qualcomm.com/news/releases/2021/06/qualcomm-introduces-new-5g-distributed-unit-accelerator-card-drive-global
https://www.qualcomm.com/news/releases/2021/06/qualcomm-introduces-new-5g-distributed-unit-accelerator-card-drive-global
https://www.qualcomm.com/news/releases/2021/06/qualcomm-introduces-new-5g-distributed-unit-accelerator-card-drive-global
https://symphony.rakuten.com/newsroom/rakuten-symphony-symware-phase-two-begins
https://symphony.rakuten.com/newsroom/rakuten-symphony-symware-phase-two-begins
https://www.vodafone.com/sites/default/files/2022-12/journey-to-cloud-native-fully-software-defined-vran-architecture.pdf
https://www.vodafone.com/sites/default/files/2022-12/journey-to-cloud-native-fully-software-defined-vran-architecture.pdf
https://www.verizon.com/about/news/verizon-deploys-more-8000-vran-cell-sites
https://www.verizon.com/about/news/verizon-deploys-more-8000-vran-cell-sites
https://www.fiercewireless.com/tech/vodafone-turns-first-uk-5g-open-ran-site
https://www.fiercewireless.com/tech/vodafone-turns-first-uk-5g-open-ran-site
https://www.usenix.org/conference/osdi20/presentation/aguilera
https://www.usenix.org/conference/osdi20/presentation/aguilera
https://doi.org/10.1109/ISGT-Europe47291.2020.9248891
https://doi.org/10.1109/ISGT-Europe47291.2020.9248891
https://doi.org/10.1109/TELFOR.2017.8249289
https://cloudplatform.googleblog.com/2015/03/Google-Compute-Engine-uses-Live-Migration-technology-to-service-infrastructure-without-application-downtime.html
https://cloudplatform.googleblog.com/2015/03/Google-Compute-Engine-uses-Live-Migration-technology-to-service-infrastructure-without-application-downtime.html
https://cloudplatform.googleblog.com/2015/03/Google-Compute-Engine-uses-Live-Migration-technology-to-service-infrastructure-without-application-downtime.html
https://doi.org/10.1109/DSN.2014.18
https://doi.org/10.1145/3447993.3483247
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yi
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yi
https://www.usenix.org/conference/nsdi18/presentation/dalton
https://doi.org/10.1145/2815400.2815425
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eisenbud
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eisenbud
https://doi.org/10.1145/1945023.1945037
https://doi.org/10.1145/1945023.1945037
https://doi.org/10.1145/3452296.3472894
https://doi.org/10.1145/3447993.3483266
https://doi.org/10.1145/3544216.3544217
https://doi.org/10.1145/3544216.3544217
https://doi.org/10.1145/2377677.2377683
https://doi.org/10.1145/3447786.3456234
https://www.rcrwireless.com/20200925/5g/breaking-down-the-pros-of-open-ran
https://www.rcrwireless.com/20200925/5g/breaking-down-the-pros-of-open-ran
https://doi.org/10.1109/ICET.2015.7389166
https://doi.org/10.1109/ICET.2015.7389166
https://doi.org/10.1145/3117811.3117838
https://doi.org/10.1145/3131473.3131474
https://doi.org/10.1145/3131473.3131474
https://doi.org/10.1145/3241539.3241564

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Lazarev and Ji et al.

[57] Navid Nikaein, Mahesh K. Marina, Saravana Manickam, Alex Dawson, Raymond
Knopp, and Christian Bonnet. 2014. OpenAirInterface: A Flexible Platform
for 5G Research. SIGCOMM Comput. Commun. Rev. 44, 5 (oct 2014), 33–38.
https://doi.org/10.1145/2677046.2677053

[58] Guillermo Pocovi, Hamidreza Shariatmadari, Gilberto Berardinelli, Klaus Ped-
ersen, Jens Steiner, and Zexian Li. 2018. Achieving ultra-reliable low-latency
communications: Challenges and envisioned system enhancements. IEEE Network
32, 2 (2018), 8–15.

[59] Chandra Prakash, Debadatta Mishra, Purushottam Kulkarni, and Umesh Bel-
lur. 2022. Portkey: Hypervisor-Assisted Container Migration in Nested Cloud
Environments. In Proceedings of the 18th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (Virtual, Switzerland) (VEE 2022).
Association for Computing Machinery, New York, NY, USA, 3–17. https:
//doi.org/10.1145/3516807.3516817

[60] Qualcomm. 2014. 3GPP RAN2 R2-140089, Mobility Performance in Real Networks.
(2014).

[61] Mubashir Adnan Qureshi, Ajay Mahimkar, Lili Qiu, Zihui Ge, Max Zhang, and
Ioannis Broustis. 2017. Coordinating rolling software upgrades for cellular
networks. In 25th IEEE International Conference on Network Protocols, ICNP 2017,
Toronto, ON, Canada, October 10-13, 2017. IEEE Computer Society. https://doi.
org/10.1109/ICNP.2017.8117537

[62] Shriram Rajagopalan, Dan Williams, and Hani Jamjoom. 2013. Pico replication:
A high availability framework for middleboxes. In ACM SoCC (2013).

[63] Ermínio Augusto Ramos da Paixão, Rafael Fogarolli Vieira, Welton Vasconcelos
Araújo, and Diego Lisboa Cardoso. 2018. Optimized load balancing by dynamic
BBU-RRH mapping in C-RAN architecture. In 2018 Third International Conference
on Fog and Mobile Edge Computing (FMEC). 100–104. https://doi.org/10.1109/
FMEC.2018.8364051

[64] Rehenuma Tasnim Rodoshi, Taewoon Kim, and Wooyeol Choi. 2020. Resource
Management in Cloud RadioAccess Network: Conventional andNewApproaches.
Sensors (Basel, Switzerland) 20 (2020).

[65] Adam Ruprecht, Danny Jones, Dmitry Shiraev, Greg Harmon, Maya Spivak,
Michael Krebs, Miche Baker-Harvey, and Tyler Sanderson. 2018. VM Live
Migration At Scale. In Proceedings of the 14th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments (Williamsburg, VA, USA)
(VEE ’18). Association for Computing Machinery, New York, NY, USA, 45–56.
https://doi.org/10.1145/3186411.3186415

[66] Justine Sherry, Peter Xiang Gao, Soumya Basu, Aurojit Panda, Arvind Kr-
ishnamurthy, Christian Maciocco, Maziar Manesh, João Martins, Sylvia Rat-
nasamy, Luigi Rizzo, and Scott Shenker. 2015. Rollback-Recovery for Middle-
boxes. SIGCOMM Comput. Commun. Rev. 45, 4 (aug 2015), 227–240. https:
//doi.org/10.1145/2829988.2787501

[67] Aidan Shribman and Benoit Hudzia. 2012. Pre-copy and post-copy VM live
migration for memory intensive applications. In European Conference on Parallel
Processing. Springer, 539–547.

[68] Tshiamo Sigwele, Atm S Alam, Prashant Pillai, and Yim F Hu. 2017. Energy-
efficient cloud radio access networks by cloud based workload consolidation for
5G. Journal of Network and Computer Applications 78 (2017), 1–8.

[69] Radostin Stoyanov and Martin J. Kollingbaum. 2018. Efficient Live Migration of
Linux Containers. In ISC Workshops.

[70] Sharan Turlapati and Srivatsa Bhat. 2021. Linux kernel support for kernel thread
starvation avoidance. Real-Time Micro-conference, Linux Plumbers Conference
2021 (2021). https://linuxplumbersconf.org/event/11/contributions/1061/

[71] Cheng Wang, Xusheng Chen, Weiwei Jia, Boxuan Li, Haoran Qiu, Shixiong Zhao,
and Heming Cui. 2018. PLOVER: Fast, Multi-core Scalable Virtual Machine
Fault-tolerance. In 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18). 483–489.

[72] Sen Xu, Meng Hou, Yu Fu, Honglian Bian, and Cheng Gao. 2018. Improved
Fast Centralized Retransmission Scheme for High-Layer Functional Split in 5G
Network. Journal of Physics: Conference Series 960 (2018).

[73] Xing Xu, Ioannis Broustis, Zihui Ge, Ramesh Govindan, Ajay Mahimkar, N. K.
Shankaranarayanan, and Jia Wang. 2015. Magus: minimizing cellular service
disruption during network upgrades. In Proceedings of the 11th ACM Conference
on Emerging Networking Experiments and Technologies, CoNEXT 2015, Heidelberg,
Germany, December 1-4, 2015. ACM. https://doi.org/10.1145/2716281.2836106

[74] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi
Zhang, Philip Levis, and Keith Winstein. 2020. Learning in situ: a randomized
experiment in video streaming. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20). USENIX Association, Santa Clara, CA,
495–511. https://www.usenix.org/conference/nsdi20/presentation/yan

[75] Qing Yang, Xiaoxiao Li, Hongyi Yao, Ji Fang, Kun Tan, Wenjun Hu, Jiansong
Zhang, and Yongguang Zhang. 2013. BigStation: enabling scalable real-time
signal processingin large MU-MIMO systems. Proceedings of the ACM SIGCOMM
2013 conference on SIGCOMM (2013).

[76] Hang Yin, Nanxi Li, Jing Guo, Jianchi Zhu, and Xiaoming She. 2022. NR Coverage
Enhancements for PUSCH. IEEE Communications Magazine (2022).

[77] Diyu Zhou and Yuval Tamir. 2021. HyCoR: Fault-Tolerant Replicated Containers
Based on Checkpoint and Replay. CoRR abs/2101.09584 (2021). arXiv:2101.09584
https://arxiv.org/abs/2101.09584

[78] Diyu Zhou and Yuval Tamir. 2022. RRC: Responsive Replicated Containers. In
2022 USENIX Annual Technical Conference (USENIX ATC 22). 85–100.

https://doi.org/10.1145/2677046.2677053
https://doi.org/10.1145/3516807.3516817
https://doi.org/10.1145/3516807.3516817
https://doi.org/10.1109/ICNP.2017.8117537
https://doi.org/10.1109/ICNP.2017.8117537
https://doi.org/10.1109/FMEC.2018.8364051
https://doi.org/10.1109/FMEC.2018.8364051
https://doi.org/10.1145/3186411.3186415
https://doi.org/10.1145/2829988.2787501
https://doi.org/10.1145/2829988.2787501
https://linuxplumbersconf.org/event/11/contributions/1061/
https://doi.org/10.1145/2716281.2836106
https://www.usenix.org/conference/nsdi20/presentation/yan
https://arxiv.org/abs/2101.09584
https://arxiv.org/abs/2101.09584

	Abstract
	1 Introduction
	2 Motivation and background
	2.1 Motivation for RAN resilience
	2.2 A primer on vRAN deployments
	2.3 Availability target
	2.4 PHY downtime with VM migration

	3 Overview of Slingshot
	3.1 Challenges
	3.2 Key ideas
	3.3 Slingshot architecture

	4 PHY processing impairments wireless signal impairments
	4.1 Migrating at TTI boundaries
	4.2 Inter-TTI state in uplink processing

	5 In-switch fronthaul middlebox
	5.1 RU-to-PHY mapping in the data plane
	5.2 In-switch RAN failure detection

	6 Orion: L2-to-PHY middlebox
	6.1 Stateless inter-Orion transport
	6.2 Null FAPIs for efficient secondary PHY
	6.3 Managing PHY migration

	7 Implementation
	8 Evaluation
	8.1 Reliable videoconferencing
	8.2 End-to-end benchmarks
	8.3 Live PHY upgrades
	8.4 Stress test for discarding PHY state
	8.5 Overhead of secondary PHYs
	8.6 Switch microbenchmarks
	8.7 Orion microbenchmarks

	9 Related work
	10 Future work
	11 Conclusion
	Acknowledgments
	References

