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ABSTRACT ACM Reference Format:

This paper proposes a systematic approach to incrementally
enabling large MTUs in the Internet. We demonstrate that
increasing the MTU size significantly enhances the perfor-
mance of both middleboxes and end hosts. To bridge MTU
mismatches at network borders, we introduce PacketExpress
gateway (PXGW), an MTU-translating gateway that dynam-
ically adjusts packet sizes for cross-traffic. PXGW merges
and splits TCP payloads on the fly and tunnels UDP packets,
ensuring seamless adaptation. Also, we propose F-PMTUD, a
new path MTU discovery algorithm that determines the path
MTU within a single round-trip without relying on ICMP.
Our preliminary evaluation shows that the PXGW prototype
achieves 1.45 Tbps of packet forwarding throughput using
only 8 CPU cores. After dynamic conversion, 94% of trans-
mitted TCP packets are 9000 B jumbo frames, indicating that
most flows were effectively converted into large segments,
thereby demonstrating the system’s efficiency and scalabil-
ity. We also find that large-MTU packets, made available via
PXGW, enhance end-host performance by up to 2.5x%.
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1 INTRODUCTION

The origins of 1500-byte (1500 B) MTU on the Internet trace
back to the first Ethernet specification in 1980 [41]. This
document defines the payload size of an Ethernet frame to
be between 46 and 1500 B, which comes down even to the
latest standard [28]. The minimum size of 46 B was necessary
for reliable collision detection in the shared medium [29],
whereas the maximum size of 1500 B has long been a mystery
in the community.

Recently, Bob Metcalfe clarified this magic number by
stating that 1500 B was chosen to align with the disk sector
size of Xerox-D systems [15] at that time, so that the OS can
process data at sector boundaries.! He also explained a gen-
eral strategy of the choice: increasing the payload size would
lead to higher forwarding delays and greater susceptibility
to packet losses due to channel errors, while a smaller size
would reduce efficiency. As expected, the 1500 B limit had
no intrinsic connection to Ethernet’s fundamental operation.
Nevertheless, it remains the de facto MTU across the entire
Internet today!

Unfortunately, the legacy MTU of 1500 B is highly ineffi-
cient, especially for emerging applications that require a large
network bandwidth. 8K/16K online video streaming [25, 44],
cloud virtual reality (VR) applications [34, 45], and holopor-
tation [38] often demand 100s of Mbps to over 1 Gbps of
throughput per flow. Accommodating large physical band-
width is viable as modern commodity NICs [4, 8, 35] can
deliver 100s of Gbps while off-the-shelf switches can handle
10s of Tbps of traffic [10, 14, 21]. However, the key deterrent
is the lack of processing cycles as CPU advancements have
slowed down significantly [6, 43], making it too costly for
middleboxes or end hosts to process such a large volume of

IPersonal communication with Bob Metcalfe on 4/22/2024.
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traffic, especially when transmitted in small legacy-MTU-
sized packets. In the near future, the introduction of 800 Gbps
or 1.6 Tbps NICs will require even hardware switches to han-
dle over 67 or 133 million packets per second for a 1500 B
MTU. Upgrading the MTU may soon become a necessity.

Employing a large MTU can substantially alleviate the
CPU requirement for handling bandwidth-heavy applications.
A large MTU increases the payload-to-header ratio and im-
proves the packet-processing stack’s efficiency (e.g., by re-
ducing DMA overhead and minimizing the number of packets
to process). Additionally, it enhances throughput by increas-
ing the congestion window more rapidly. The benefit is more
pronounced in middleboxes that perform multiple rule table
lookups per packet, including carrier-grade NATs, firewalls,
L4 load balancers, and a user plane function (UPF) in a 5G
cellular network.

The performance benefits of larger MTUs are substantial
and compelling. Our experiments show that a larger MTU size
dramatically improves system performance. We observe that
a 5G UPF achieves 5.6x higher throughput with 9 KB MTU
compared to 1500 B MTU, reaching 208 Gbps on a single
CPU core. End hosts also benefit significantly — even when
accounting for modern optimizations like Large Receive Of-
fload (LRO) or Generic Receive Offload (GRO), large MTUs
still outperform legacy MTU with G/LRO by 5.4 in WAN
environments. Compared to an alternative approach that em-
ploys parallel connections, a large MTU reduces the CPU
usage by up to 2.88x.

However, adopting a large MTU across arbitrary Internet
paths is challenging, as upgrading the MTU of every network
on a flag day is virtually impossible. Instead, we envision a
pragmatic approach that allows selective upgrades only for
the networks that are willing to deploy a large MTU. For ex-
ample, cellular access/core networks, data centers, and large
enterprise networks, typically operated by a single administra-
tive domain, can implement a large MTU and benefit from the
increased efficiency within their networks. The key difference
from the current practice of configuring a large MTU only
for intra-network traffic is that our approach enables MTU
upgrades even for inter-network traffic even when the external
networks continue to use the legacy MTU of 1500 B.

In this paper, we propose PacketExpress (PX), an in-network
framework that dynamically adjusts the MTU of packets en-
tering and exiting a beneficiary network of large MTU (called
b-network in this paper) while maintaining compatibility with
neighboring networks. The key idea is simple: PX deploys
flow-aware, packet-level middleboxes, called PX Gateway
(PXGW), at the border of the b-network. PXGW transparently
translates the MTU of the packets between the b-network (A)
and its neighboring networks (B). For example, if b-network
A uses a large MTU (e.g., 9 KB) while neighboring network B
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retains a normal MTU (e.g., 1500 B), PXGW merges incom-
ing normal-MTU packets from network B into large-MTU
packets for network A. Similarly, PXGW splits large-MTU
packets from network A into normal-MTU packets and then
forwards them to network B. Within network A, all devices
(e.g., switches, routers, middleboxes, and end hosts) are con-
figured to operate with the larger MTU, benefiting from the
larger payload size and fewer packets. This approach is trans-
parent to neighboring networks, requiring no MTU upgrade
outside the b-network.

Realizing PX entails several key technical challenges. The
PXGW, located at network borders, must achieve very high
throughput and low latency to handle Tbps traffic. Addition-
ally, we must ensure transport-layer protocol conformance
during MTU translation and require a more robust path MTU
discovery scheme to fully harness the advantages of a large
MTU over eligible path segments, as existing PMTUD [13]
and PLPMTUD [31] suffer from issues such as ICMP black
holes [26] and performance limitations. To address these chal-
lenges, we leverage NIC offload capabilities such as LRO,
TCP segmentation offload (TSO), receive side scaling (RSS),
and NIC hairpin, and introduce F-PMTUD, a new path MTU
discovery algorithm that determines the path MTU within a
single round-trip without relying on ICMP, along with UDP-
caravan for handling UDP packet translation.

Our preliminary evaluation shows that a DPDK [22]-based
PXGW prototype achieves 1.45 Tbps of packet forwarding
performance with only 8 CPU cores. After dynamic conver-
sion, 94% of the TCP packets become 9 KB jumbo packets,
confirming the effectiveness of flow-level packet size conver-
sion. We also find that large-MTU packets, which are made
available via PXGW, enhance end host performance by 1.8x
to 2.5%.

2 TRADE-OFFS OF THE MTU SIZE

The network environment has significantly evolved over the
past four decades, allowing for a revisit of the legacy MTU
choice, based on small forwarding latency and low bit error
rates. The link bandwidth has increased by several orders
of magnitude, significantly reducing forwarding latency. For
example, in a 400 Gbps network, transmitting a 9 KB packet
takes only 0.18 s, and even a 64 KB packet takes 1.31 ps.
Meanwhile, bit error rates (BER) have substantially improved
due to advancements in modern NICs and switches. The IEEE
standard mandates that the 64 B frame loss rate be less than
6.2 x 10~ for 200/400 GbE-SR/VR [27], which means there
is an average of one frame loss per every 1261 GB of data
transferred, even with an MTU of 64 KB. While a larger MTU
would result in more data being retransmitted in the case of an
error, the impact remains minimal given the low probability.
We discuss the pros and cons of MTU upgrades below.
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Figure 1: Effectiveness of large MTU

# of Sessions | 1 Conn. (MTU 9000 B) | 6 Conn. (MTU 1500 B)
1 20.20% 19.52%
10 22.12% 34.53%
100 34.72% 100.00%

Table 1: Server-side CPU usage comparison: single TCP con-
nection with 9 KB MTU vs. multiple parallel connections with
1500 B MTU. We use axel [1] to use parallel TCP.

2.1 Why is a Larger MTU Beneficial?

Higher TCP throughput. A larger MTU scales the conges-
tion window size more rapidly, resulting in higher throughput.
In the TCP slow start phase, the congestion window increases
by one maximum segment size (MSS) per acknowledgment
(ACK), and in the congestion avoidance phase, the window
grows by one MSS per round-trip time (RTT) [2, 3]. Thus, a
larger MSS would allow faster congestion window ramp-up
at start while the TCP throughput in the steady state is pro-
portional to the MSS, assuming the packet loss rate remains
unchanged [32, 39]. The performance benefit persists even
if one large-MTU packet is translated into multiple smaller
packets, provided the network has sufficient bandwidth.
Improved CPU efficiency. A larger MTU reduces the num-
ber of packets, thereby improving packet I/O and packet
processing performance. Larger packets enhance DMA effi-
ciency and significantly diminish per-packet overhead. Also,
a large MTU provides even greater benefits to middleboxes.
We demonstrate this benefit with an open-sourced cellular
UPF of the Open Mobile Evolved Core (OMEC) project [17].
The UPF leverages BESS [19], a modular software switch
that runs on DPDK [22], which serves as the software-based
datapath for UPF. The rule setup for the UPF is described in
Section 5. We use iPerf to generate 800 concurrent TCP flows
and configure the UPF to use a single CPU core.

Figure 1a shows that the 5G UPF throughput scales almost
linearly with MTU size. The UPF achieves 208 Gbps with the
9 KB MTU, even on a single core, a speedup of 5.6 over the
1500 B-MTU. Larger MTUs are particularly advantageous
to the UPF performance, as the UPF processes packets only
based on the header information.

2.2 Potential Alternatives and their Pitfalls

Parallel connections. An alternative approach to increasing
throughput is to employ parallel connections, which can scale
the aggregate congestion window size similarly to adopting
a large MTU. However, maintaining multiple connections
can incur high overhead on the server and significantly in-
crease the complexity of connection management, as similarly
observed in the argument of HTTP/2 vs. HTTP/1.1 [5, 42].
Table 1 compares the CPU consumption when using a ses-
sion that employs six parallel connections with the legacy
MTU to collectively download the same large file vs. a single-
connection session for downloading the large file with a
9 KB MTU. We note that both cases achieve similar network
throughputs. However, as the number of sessions increases,
the parallel-connection approach requires significantly more
CPU cycles. At 100 streams, parallel connections consume
2.88x more CPU cycles on the server.

Packet coalescing at end hosts. The receiver-side end host
can employ packet merging schemes like NIC-level LRO or
kernel-level general receive offload (GRO). These improve
CPU efficiency and might offset the benefits of in-network
MTU translation. Figure 1b shows that one can achieve a
similar throughput improvement by enabling GRO and LRO
without increasing the MTU. With G/LRO, the single flow
throughput goes up to 50.1 Gbps with 1500 B MTU. In fact,
applying both G/LRO is more performant than the 9 KB MTU
without the options. This raises a question: is a large MTU
really necessary for endpoints?

We still argue that employing a large MTU is beneficial for
endpoints. First, the effectiveness of G/LRO degrades rapidly,
even with a small number of concurrent flows. Figure 1c
shows that the aggregate throughput drops by 31% with only 4
concurrent flows. This is because the interleaved packets from
multiple flows reduce the opportunity for packet aggregation.
Concurrent flows also impact performance with larger MTUs,
but the throughput degradation is much lower (e.g., 7% at
4 concurrent flows). Second, G/LRO’s benefit is limited to
saving the CPU cycles for receive (RX) packet processing,
while a large MTU reduces the CPU cycles for both endpoints.
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Figure 2: Overall architecture of PacketExpress

Also, a larger MTU would ramp up the sending rate faster as
explained in Section 2.1. Figure 1d shows that 9 KB-MTU
outperforms 1500 B-MTU with G/LRO by 5.4 in the WAN
with 10 ms of end-to-end (E2E) delay and 0.01% of packet
loss rate. Finally, LRO is not widely adopted by commodity
on-board NICs [7, 20] of end hosts or mobile devices, and it is
applicable only to TCP. While GRO may obviate the need for
LRO, it consumes precious CPU cycles. Thus, we conclude
that employing a large MTU remains beneficial for endpoints.

Concerns on congestion. A large MTU may exacerbate net-
work congestion due to more aggressive sender behavior.
‘While this is a valid concern, we make a few observations
that alleviate it. First, the link bandwidth has scaled up by
0(10,000) times from 10 Mbps when the legacy MTU was
first suggested. Using an MTU a few times larger may have
little impact on congestion. Also, modern datacenter and cel-
lular core networks offer sufficient bandwidth that can accom-
modate bandwidth-hungry applications. Second, it is widely
known that the network core is overprovisioned [9, 18, 33]
and the access network bandwidth has been substantially
improved. Moreover, the majority of flows in the WAN are
short-lived, which implies that only a fraction of the flows
require very high bandwidth. We admit this is only our esti-
mate, and we leave a more thorough study on the possibility
of congestion due to a large MTU to our future work.

3 CHALLENGES OF MTU UPGRADE

Challenges in UDP packet resizing. TCP packets can be dy-
namically merged or split thanks to TCP’s byte-stream nature,
but arbitrarily merging or splitting UDP packets hinders the
applications from interpreting the payload. For example, if
two QUIC datagrams are merged or a large datagram is split
by the network, the receiver may fail to parse the packet, as
QUIC encrypts both headers and payload and relies on strict
datagram boundaries for interpretation. Unlike TCP, QUIC
over UDP expects each datagram to be delivered intact and
individually processed. This makes transparent packet merg-
ing or splitting infeasible for UDP-based protocols, where
the application semantics and encryption schemes critically
depend on preserving the original datagram boundaries.

High packet merging overhead. Packet segmentation is in-
herently scalable because each large packet can be split inde-
pendently without flow tracking. In contrast, packet merging
requires identifying flows and determining whether incoming

Yoon et al.

packets are contiguous and mergeable, which inevitably in-
troduces per-flow state. As the number of concurrent flows
increases, searching for merge candidates across flows incurs
significant CPU overhead, making it difficult to sustain high
throughput at PXGW. Moreover, packets from small flows —
typically unmergeable — consume CPU resources and inter-
fere with the merging of large flows, thereby reducing overall
efficiency. To build a scalable packet merging system, it is
essential to leverage NIC hardware offloads to reduce CPU
cycles and to adopt data structures that support fast lookup of
adjacent packets under a large number of flows. Additionally,
traffic classification techniques that separate merge-friendly
large flows from small, sporadic flows will be necessary to
mitigate interference and preserve throughput.

Limitation of classical PMTUD and PLPMTUD. When
networks start to upgrade the MTU incrementally, finding
the path MTU reliably becomes important as endpoints can
leverage a large path MTU for efficient transmission on the
path. However, the traditional PMTUD mechanism [13] is
unreliable as it depends on ICMP messages to detect the
smallest MTU. Unfortunately, many routers and middleboxes
are configured to suppress ICMP messages, either due to
misconfigurations or security concerns. This often results
in “ICMP blackholes”, where packets exceeding the path
MTU are silently dropped, and no feedback is delivered to
the sender. Moreover, it would require multiple rounds of
time-consuming probing to figure out the path MTU even
in a network that delivers ICMP messages. More recently,
Packetization Layer PMTUD (PLPMTUD) [31] allows dy-
namic path MTU discovery using data segments as probes
without dependency on ICMP. However, PLPMTUD relies on
loss-based signals to infer MTU limitations, which introduces
ambiguity in distinguishing between losses caused by conges-
tion and those caused by MTU violations, making recovery
and congestion control more complex. Similar to PMTUD, it
follows a trial-and-error approach using data probes, multiple
RTTs are needed to safely converge on a usable MTU. Due to
these challenges, PLPMTUD has not seen wide deployment;
only a few implementations, such as the Linux TCP stack,
support it as an optional and non-default feature. We need a
more efficient and robust PMTUD mechanism.

4 PACKETEXPRESS OVERVIEW

Figure 2 illustrates the overall architecture of a PX network
that consists of two beneficiary networks (b-networks 1 and
2). Each b-network is configured with a large iMTU (an in-
ternal MTU that serves as the path MTU between any two
nodes in the b-network), interconnected via the public Inter-
net that operates with a smaller eMTU (an external MTU
obtained from the next hop router). Note that this is just one
plausible exmaple, and there can be many different scenarios
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Figure 3: PX-caravan format

(e.g., only one endpoint belongs to a b-network). The PXGW
between these domains dynamically performs translation be-
tween iMTU and eMTU. As long as each b-network is fully
under operator control and can consistently enforce the use
of iMTU within its domain, support for heterogeneous MTUs
becomes practical through PXGW at the network edge. Note
that it is recommended to deploy PXGW as close to a neigh-
boring network as possible to allow more internal nodes to
benefit from the larger MTU.

4.1 Protocol-conformant MTU translation

MTU translation for TCP packets. TCP is a byte-stream,
order-preserving protocol, allowing in-network packet seg-
mentation and reassembly on the fly. Thus, PXGW can per-
form MTU translation of TCP packets transparently without
any modification of end hosts. Conceptually, this is analogous
to applying TSO/GSO and LRO/GRO at end hosts. However,
the MSS of a TCP connection is negotiated at handshake by
the endpoints, so the sender can be constrained to transmit
only small segments even if the internal path supports a larger
MTU. To address this, PXGW needs to intervene during the
MSS negotiation, effectively advertising a larger MSS on
behalf of the downstream endpoint.

MTU translation for UDP packets. Since UDP packets do
not allow dynamic segmentation and reassembly in general,
we introduce "PX-caravan" that tunnels multiple UDP pack-
ets of the same flow into one large packet. As shown in the
Figure 3, the outer UDP/IP headers of a PX-caravan packet
carry the entire length, while the inner UDP header of each
packet carries its own length. PXGW merges the incoming
UDP packets of the same flow or with the same destination,
while it splits them when they leave the b-network. However,
this requires the modification of the end hosts as they must
deliver the individual packets from the PX-caravan packet to
the application or tunnel multiple packets into a PX-caravan
packet before forwarding in the b-network. The PXGW func-
tion designates the IP header’s ToS field to indicate that the
packet has been tunneled.

Scalable packet merging. PXGW exploits standard NIC
offloads like LRO, TSO, and scatter-gather DMA for scalable
packet merging and splitting. Basically, it leverages LRO to
merge contiguous TCP packets in the same flow, and applies

2UDP_SEGMENT and UDP_GRO [24] are limited to in-host optimizations that
bundle multiple UDP payloads into a single packet internally; they do not
represent true datagram-level segmentation or reassembly.
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Figure 4: F-PMTUD with legacy routers

TSO to split the large packet content into multiple iMTU-
bound packets before forwarding into the b-network. In addi-
tion, PXGW employs several optimization techniques: an en-
hanced algorithm for improved packet merging, a unified API
for optimal utilization of multi-RX queues and RSS, delayed
packet merging to maximize the number of iMTU-bound
packets, merging after header-only DMA using NIC mem-
ory [40], and steering of small flows to prevent performance
degradation using hairpin [37]. Due to the space constraint,
we omit the details of these techniques.

4.2 Extending the Large-MTU Path

Incremental MTU upgrade offers a new opportunity to extend
the benefits of a large MTU for selective end-to-end network
paths or even path segments. We present two ideas to fully
harness the advantages of a large MTU over eligible path
segments.

Explicit iMTU advertisement. If a PX b-network directly
neighbors other b-networks, it can extend the network path
segment that employs a large MTU by explicitly exchanging
the per-network iMTU information. Say a b-network employs
the 9K iMTU and discovers that neighboring b-networks
adopt the same or larger iMTU. Then, it can forward packets
towards the neighboring domain without translating the MTU.
Both networks can forward large-MTU TCP packets as is
while they can use the PX-caravan packets without dynamic
resizing. A key issue lies in how to disseminate the iMTU to
neighboring networks. One can augment BGP announcements
to carry the AS-level iMTU information, or one can come up
with a new messaging protocol that runs on PXGW.

F-PMTUD. Another approach is to find the path MTU di-
rectly over an end-to-end path, leveraging a new PMTUD
algorithm called F-PMTUD. The key idea behind F-PMTUD
is to actively use IP packet fragmentation to accurately de-
termine the PMTU. F-PMTUD consists of a PMTU prober
and an F-PMTUD daemon running on the destination node.
The prober sends a dummy UDP packet sized to the eMTU
of the next hop (say eMTU1) to the destination node with a
well-known port. Any PXGW along the path simply forwards
the probe packet without merging it into a PX-caravan. If
the PMTU is smaller than eMTU1, the probe packet is frag-
mented en route. The F-PMTUD daemon on the destination
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node receives either the entire probe packet (if unfragmented)
or a sequence of fragments. It then reports back the sizes
of the packet or all received fragments to the prober, which
determines the PMTU as either eMTU] or the size of the
largest fragment. This discovery process is fast as it takes
only one RTT. Figure 4 shows an example scenario where a
prober sends a 9 KB eMTU-sized probe packet to the desti-
nation daemon. As the packet traverses the network, routers
with different MTU limits fragment it. Upon receiving all
fragments, the daemon reports their sizes back to the prober,
which determines the PMTU based on the largest fragment
(1000 B in this case).

S PRELIMINARY EVALUATION

We evaluate the feasibility of PX by answering the follow-
ing questions. First, does the prototype PXGW achieve high
throughput in dynamically converting packet size? Second,
does PXGW improve the performance of end nodes? Finally,
is it feasible to deploy F-PMTUD in the current Internet?
Setup. We use a machine with a Xeon Gold 6554S CPU and
4 ConnectX-7 400 GbE NICs [35] for PXGW. We use 4 client
and 4 server machines, each equipped with an Xeon Gold
5512U CPU and a ConnectX-7 400 GbE NIC. We configure
the MTU of 1500 B in the path between the servers and
PXGW and 9 KB between the clients and PXGW. This setup
enables both uplink and downlink flows, leading PXGW to
split uplink packets and merge those for downlink. Using the
testbed, we can evaluate the performance of PXGW by up
to 1.6 Tbps of traffic. For the tests without MTU translation,
we use 1500 B-MTU everywhere. We turn on TSO, LRO,
GSO, and GRO on all endpoints. For the default test scenario,
we use 800 iPerf bidirectional TCP flows to generate large
TCP traffic from four servers to four clients and vice versa.
This allows at most 2 Gbps per flow. To evaluate PX-caravan,
we use 800 bidirectional iPerf UDP flows, with each flow
generating at most 2 Gbps of traffic. PXGW is configured to
merge consecutive UDP packets using the IP ID field to be
compatible with UDP_GRO, so it produces PX-caravan packets
in the format of Figure 3. We have modified the network stack
of receiver end hosts to interpret the PX-caravan packets for
UDP as UDP_GRO payload.

5.1 Performance of PXGW

We evaluate the performance of PXGW in terms of through-
put and conversion yield. The conversion yield refers to the
ratio of iMTU-sized packets after packet size conversion. We
implement the TCP baseline with DPDK GRO library [16].

Throughput and conversion yield. Figure 5a presents the

packet forwarding throughput and conversion yield of PXGW
under 800 TCP flows. We evaluate two versions of PXGW:
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(1) "PX", which applies all techniques except header-only
DMA, and (2) "PX + header-only". Header-only DMA is
evaluated separately since it is experimental due to limited
NIC store [40]. "PX" achieves 1.09 Tbps throughput and a
93% conversion yield using only 8 CPU cores, compared to
the baseline’s 167 Gbps and 76%. This shows that PXGW
converts most packets into 9 KB segments while sustaining
Tbps-scale throughput. With header-only DMA, the perfor-
mance improves further to 1.45 Tbps and 94%, thanks to
reduced memory bandwidth consumption. Figure 5b shows
the results for 800 UDP flows. The peak throughput is slightly
lower due to the absence of LRO and TSO benefits. Nev-
ertheless, the conversion yield remains comparable to TCP,
thanks to delayed merging. Enabling header-only DMA also
improves the maximum throughput in UDP experiments.

5.2 Benefits for Endpoints with PXGW

We evaluate the performance benefits for endpoints in a b-
network. We use 9 KB of iMTU for the b-network and 1500 B
eMTU for the external network.

Sender in a b-network. To simulate the WAN environment,
we use a Linux software router and introduce 10 ms of delay
and a 0.01% loss rate on the external network with netem [23].
We generate a single TCP flow with iPerf for a minute and
measure the average TCP throughput. We observe that TCP
throughput increases by 2.5x when PXGW employs the 9 KB
iMTU even when the receiver is in a legacy network with
the 1500 B eMTU. This is because the sender TCP stack
increases the congestion window by 9 KB per RTT, 6x faster
than with the legacy MTU of 1500 B. This confirms that incre-
mentally upgrading only the sender network brings significant
performance benefits.

Receiver in a b-network. To evaluate the impact on a receiver
in a b-network, we run iPerf with 100 TCP flows and measure
RX throughput with a single CPU core. Also, we incremen-
tally enable LRO and GRO at the receiver to analyze the
effects of these features. Figure 5S¢ shows that the RX through-
put improves by 1.5x ~ 1.8x when we use 9 KB-iMTU inside
the b-network. Even when LRO and GRO are enabled, the
performance gain from MTU translation is substantial as a
larger MTU further improves the CPU efficiency. Obviously,
the TCP receiver will benefit the most from PXGW in an en-
vironment where offload features such as LRO and GRO are
unavailable, such as in mobile devices 3. We also evaluate the
performance of PX-caravan with the UDP_GRO option on. PX-
caravan achieves a 2.4x better throughput than the baseline
with the 1500 B MTU. Unlike the sender case, the receiver-
side performance benefit is almost the same as adopting the
9 KB MTU in the end-to-end path.

3GRO might be available, but it consumes extra CPU cycles and power.
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Figure 5: Performance of PXGW and endpoints in a beneficiary network

5.3 Feasibility of F-PMTUD

Evaluating F-PMTUD across arbitrary network paths is chal-
lenging, so we test its feasibility on a small scale with Cloud-
Lab [36] while we validate fragmented packet delivery to
popular sites from our campus. First, we measure the PMTU
with 6 CloudLab nodes across the U.S., each probing all pair-
wise paths. F-PMTUD is compared against Scamper [30],
a UDP-based PLPMTUD implementation. We confirm that
both methods produce identical PMTU values on all paths,
but F-PMTUD is significantly faster, as Scamper requires
multiple RTTs to converge. For example, between the Utah
and Massachusetts nodes, we observe that F-PMTUD is 368x
faster than PLPMTUD.

We also test whether IP-fragmented packets that F-PMTUD
depends on are successfully delivered over the WAN. From
the top 1M domains on Cloudflare Radar [11], we obtain
389,428 live servers with unique IPs. We then send IP- frag-
mented HTTP requests and check the responses. We find
that 99.98% of the servers respond, indicating widespread
support for fragmented packets. The remaining 59 servers
handle unfragmented HTTP requests, but they do not respond
to fragmented requests with the identical content. 15 of them
show that the last hop AS filters the fragments, but others do
not respond to our probes. Although a strict apples-to-apples
comparison is difficult due to differences in measurement
dates and server sets, ICMP-based PMTUD was reported to
succeed on only 51% of servers as of 2018 [12], with a con-
tinued decline. In contrast, F-PMTUD is expected to achieve
near-universal success once deployed. A comprehensive eval-
uation on a consistent and up-to-date server set is left for
future work.

6 CONCLUSION

The tremendous success of Ethernet has unintentionally im-
posed a limitation on the maximum packet size, which still
impedes forwarding and processing efficiency in today’s In-
ternet. To address the problem, we have proposed PX, which
presents an incremental path to MTU upgrade across the In-
ternet without requiring coordination with all network entities.

We have demonstrated that PXGW, even as a software-based
platform, achieves a significant MTU translation throughput
on the Tbps scale with 94% conversion to 9 KB packets. Our
F-PMTUD is more robust and faster than existing PMTUD
algorithms, and we have validated its feasibility with 99.98%
of successful IP fragment delivery on the network paths.

Our proposal raises several open questions. What motivates
ISPs to upgrade the MTU, and what are the costs involved?
To what extent does a selective MTU upgrade lead to con-
gestion? What is the best approach for exchanging iMTUs
between neighboring networks? Where should we deploy the
F-PMTUD daemon, and what are the incentives for doing so?
Does a large MTU affect network congestion and how do we
ensure fair bandwidth allocation in the mix of small and large-
MTU senders? Despite these questions, we are convinced that
now is the ideal time to upgrade the MTU on the Internet, and
we urge the community to engage in this initiative.
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