
Man-Made Heuristics Are Dead. Long Live Code
Generators!

Rohit Dwivedula Divyanshu Saxena Aditya Akella Swarat Chaudhuri
Daehyeok Kim

The University of Texas at Austin
Austin, TX, USA

Abstract

Policy design for various systems controllers has convention-
ally been a manual process, with domain experts carefully
tailoring heuristics for the specific instance in which the
policy will be deployed. In this paper, we re-imagine policy
design via a novel automated search technique fueled by
recent advances in generative models, specifically Large Lan-
guage Model (LLM)-driven code generation. We outline the
design and implementation of PolicySmith, a framework
that applies LLMs to synthesize instance-optimal heuristics.
We apply PolicySmith to two long-standing systems policies
- web caching and congestion control, highlighting the oppor-
tunities unraveled by this LLM-driven heuristic search. For
caching, PolicySmith discovers heuristics that outperform
established baselines on standard open-source traces. For
congestion control, we show that PolicySmith can generate
safe policies that integrate directly into the Linux kernel.

CCS Concepts

• Information systems → Cloud based storage; • Net-
works→ Transport protocols; •Computingmethodologies

→ Heuristic function construction.

Keywords

program synthesis, LLM-driven code generation, caching,
congestion control.

ACM Reference Format:

Rohit Dwivedula Divyanshu Saxena Aditya Akella Swarat
Chaudhuri Daehyeok Kim. 2025. Man-Made Heuristics Are Dead.
Long Live Code Generators!. In The 24th ACM Workshop on Hot
Topics in Networks (HotNets ’25), November 17–18, 2025, College Park,
MD, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3772356.3772413

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
HotNets ’25, November 17–18, 2025, College Park, MD, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2280-6/25/11
https://doi.org/10.1145/3772356.3772413

1 Introduction

Systems research has long treated policy design as a manual
craft. Whether it is congestion control, caching, or schedul-
ing, performance-critical systems rely on heuristics hand-
written by domain experts, optimized for typical conditions,
and deployed as a static policy. Yet these policies are brittle,
degrading under new workloads, hardware, or objectives.
The standard response is to continually tune and re-

implement heuristics: we tweak congestion control algo-
rithms for new network environments [62], tailor prefetch-
ing and caching policies for emerging workloads [10] or
hardware [65], and evolve queueing disciplines for new per-
formance targets [17]. But this is an arms race we are losing.
We face rapid evolution in workloads, deployment settings,
and heterogeneous hardware. As such, the design space of
heuristics for most problems is complex and shifting in a
context-dependent manner. Human developers often cannot
discover "the right heuristics" fast enough.

Meanwhile, learning-based systems have shown that it is
possible to approach instance-optimality, i.e., finding the best
policy for a given context by learning from data. Prior work
in learned congestion control [2] and caching [58, 63, 70],
for example, demonstrates that data-driven policies, repre-
sented as neural networks, can significantly outperform fixed
heuristics. However, neural approaches come at a steep cost:
opaque behavior [37], complex training and deployment
pipelines [4, 19], inference overheads [19, 68], and safety
concerns [50] that preclude adoption in many environments.
Alternatively, we find that recent advancements in cod-

ing agents such as FunSearch [49], AlphaEvolve [43], and
EvoPrompting [13] present a powerful new opportunity for
policy design. These agents use a form of LLM-guided evo-
lutionary computation to synthesize expressive code that
maximizes quantitative reward functions. We propose to use
this approach to automatically synthesize system policies.
In our approach, policy design is re-imagined as an auto-

mated search problem, solved as often as needed using gen-
erative models to produce instance-optimal policy code. This
means that “intelligence” in systems no longer needs to re-
side in hard-coded rules or opaque neural network weights.
Instead, it could reside in the process by which policies are
generated. This enables a move away from deploying fixed

https://doi.org/10.1145/3772356.3772413
https://doi.org/10.1145/3772356.3772413
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3772356.3772413

HotNets ’25, November 17–18, 2025, College Park, MD, USA Dwivedula, Saxena, Akella, Chaudhuri, and Kim

logic to a pipeline that can automatically generate, evaluate,
and produce optimized code for each context. By pairing
LLMs with evolutionary search and test-time feedback, we
can explore vast policy spaces and discover high-performing
code that would be infeasible to author manually. This ap-
proach also avoids opaque learned models in favor of policy
code that is safer and more interpretable.
In the limit, this shift can unlock a future where systems

come with tailor-made, self-evolving policy logic, allowing
developers to simply control high-level specifications that
include metrics they care about, such as performance and an
upper bound on the costs incurred to "search" for the policy,
among other things.
One instantiation. To ground this idea, we sketch Poli-
cySmith, a prototype system that uses LLMs to synthesize
instance-optimal policies. Given an objective and test har-
ness, it generates, evaluates, and evolves policy code offline.
However, our broader contribution is not a tool—it is a call to
rethink the boundary between systems and machine learn-
ing, and to embrace a new model of policy design.

2 Heuristic Design: Status Quo and Vision

Systems research has seen a long history of heuristics, such
as cache eviction, congestion control, and queue schedul-
ing, being developed, modified, and fine-tuned for a specific
“context” which is defined by the workload (application and
traces) being supported by the heuristic, the desired objec-
tives (e.g., performance, utilization, fairness, scalability, etc.),
and the environment (e.g., hardware) where the heuristic is
running.
Taking the concrete example of web caching, different

eviction heuristics for specific traces, objectives, or deploy-
ment scenarios [7, 31, 36, 48, 59, 60, 64, 69]. ARC [36] and
SIEVE [69] perform well for large cache sizes by balancing
new and old objects. In contrast, TwoQ [31] and LHD [7]
perform well for smaller caches due to their ability to quickly
remove low-value objects. Cacheus [48] shows that depend-
ing on whether a workload consists of mostly new objects
(“scan workloads”) or mostly repeated objects (“churn work-
loads”), different expert algorithms perform better. Addition-
ally, heuristic design often takes into account end-to-end
objectives such as tail latency [9] and fairness [33], or system-
level constraints such as CPU overhead [59], lock-free de-
sign [64], and memory efficiency [18].
Because no single heuristic performs well across all

contexts, experts routinely invest significant time adapt-
ing or inventing new heuristics for new workloads, objec-
tives, and environments. This process—designing new algo-
rithms [7, 31, 64, 69], engineering feature sets for learned
models [59, 60, 63], and evaluating across diverse traces [59]
using simulators [32] or real-world systems [8]—is man-
ual and painstakingly slow. This problem is not limited to

Figure 1: PolicySmith overview

caching alone; it is widespread across several systems poli-
cies. As a result, complex systems (e.g., the Linux Kernel) of-
ten continue running suboptimal policies for years, because
discovering better ones requires developers with kernel ex-
pertise and is too labor-intensive. The ability to automatically
discover context-specific, incrementally better heuristics can
yield meaningful gains in terms of both performance metrics
of interest and manual effort involved.
Our vision is to automate the heuristic design process

so humans can focus on what matters most: defining what
they want. This includes both the intent—the goals/objec-
tives of the heuristic—and the space it operates in, shaped
by context and constraints. These choices require high-level
reasoning about system goals, tradeoffs (like fairness or live-
ness), and operator needs—which are difficult to formalize
and automate, and deeply benefit from human experience
and intuition. Once the intent and space are clear, generat-
ing heuristics becomes a search problem that can be scaled,
guided by feedback, and automated.
In particular, automating this search process is feasible

today because large language models (LLMs) are remark-
ably effective generators: they can quickly produce a wide
range of candidate heuristics, remixing and adapting known
techniques across domains. Many state-of-the-art heuristics,
such as SIEVE [69], ARC [36], and Cacheus [48], are delicate
recombinations and improvements of existing approaches.
Because LLMs have been pretrained on code and patterns
from across the stack, they are well-positioned to generate
candidate heuristics inspired by these recurring structures;
though inventing entirely new structures and principles may
still require human insight.

3 PolicySmith

To turn the vision of automated heuristic design into practice,
we build the PolicySmith framework (Fig 1) that separates
specification (user-defined) from policy search (automated).

The user is responsible for designing a Template, which
defines the space of programs to search, and an Evaluator
that runs candidate heuristics and returns a numeric score
indicative of how well it performed in the current deploy-
ment context. The Template contains a function signature

Man-Made Heuristics Are Dead. Long Live Code Generators! HotNets ’25, November 17–18, 2025, College Park, MD, USA

or a partial code stub that specifies the semantics of what
the heuristic must implement. For example, in a caching sys-
tem, this might be a function that decides which object to
evict from a set of eviction candidates; for congestion control,
it could be event-driven functions that adjust the cwnd on
packet ACK or packet loss.

The Template, used by an LLM-based Generator to pro-
duce candidate heuristics, also contains natural-language
constraints that guide generation. These constraints describe
the constructs allowed in the heuristic, including which li-
braries may be imported, the states it can access, and any
behavioral or performance requirements. For example, con-
gestion control heuristics on the critical path in the kernel
must avoid floating-point arithmetic, locking, or unbounded
loops. In caching, constraints may require O(log N) com-
plexity, ruling out full-cache scans. Overall, the Template
(including the constraints) acts like a "design spec", ensuring
generated heuristics are efficient and deployable.

The LLM, of course, may produce code that does not honor
these constraints, due to hallucination [28, 44], producing
plausible yet non-conforming or incorrect code. To catch
such violations, users define a Checker that enforces syn-
tactic and semantic rules, and provides structured feedback
to help generators stay within spec.
With these components defined, the framework begins

its search loop. Motivated by recent coding agents such as
AlphaEvolve [43] and FunSearch [49], we leverage evolution-
ary search to explore the large space of programs defined by
the Template. This choice is motivated by the fact that the
space of “good" heuristics is discrete, combinatorially large,
and sparsely populated – making gradient-based methods
impractical and local search [51] limited in efficacy.
In our search process (Fig 1), an LLM-based Generator

synthesizes multiple candidate heuristics based on the Tem-
plate, which are scored by the context-specific Evalua-
tor, and the best-performing candidates are fed back as
examples in the next round. This loop continues for several
iterations, gradually steering the generator toward better-
performing heuristic code. At the end, PolicySmith outputs
a final heuristic tailored to the target context.

3.1 Responding to Context Shifts

PolicySmith generates instance-optimal heuristics for each
context, defined as a combination of the workload, hardware,
and the desired objectives. However, how is a context actually
delineated in practice? How do we identify when the deploy-
ment context has drifted enough to warrant re-synthesis?

3.1.1 Explicit context shifts. Some context changes might be
obvious. For instance, upgrading from HDDs to SSDs usually
requires a new block I/O scheduling heuristic [54] even if

nothing else changes (hardware change); different applica-
tion classes on the same hardware benefit from different pro-
cess scheduling [20] and networking queuing heuristics [57]
(workload change). In such scenarios, PolicySmith can be
invoked manually for each context.
3.1.2 Implicit context shifts. Context changes are not al-
ways readily apparent. A CDN server, for instance, may
experience shifts in access patterns due to the time of day,
even if the hardware and objectives remain unchanged. A
cloud provider may not have visibility into application-level
changes that affect the performance of heuristics. These drifts
degrade the performance of previously specialized heuristics
without triggering any explicit event.

To address this, prior work has developed runtime adap-
tation systems that leverage online techniques such as re-
inforcement learning [67], bayesian optimization [5], and
multi-armed bandits [14, 41] to identify context changes
and respond to them, by selecting a new heuristic or con-
figuration from a pre-defined set. These systems rely on
lightweight monitoring infrastructure (e.g., guardrails [50])
or clustering-based approaches [14] to detect context shifts.
PolicySmith complements these approaches: the same

monitoring signals that guide these systems can also trigger
PolicySmith automatically, allowing it to re-synthesize a
heuristic offline. Until a new, better heuristic is ready, the ex-
isting one continues to be used with degraded performance.
Over time, this enables building a library of PolicySmith-
generated heuristics, providing better options for an adapta-
tion system to choose from.

This paper does not focus on designing context-detection
or runtime-adaptation systems, and rather assumes such
triggers (manual or automated) are available. Given such
a trigger, the core question then becomes: can we reliably
synthesize effective heuristics for the new context? We will
explore this in two case studies1.
First (§4), we use PolicySmith to discover instance-

optimal cache eviction heuristics, illustrating its ability to
generate high-performing, context-specific policies. In the
second case study (§5), we use PolicySmith to evolve Linux
kernel code to synthesize congestion control heuristics,
demonstrating the feasibility of our vision even in highly
constrained, safety-critical systems such as the Linux kernel.

4 Case Study: Web Caching

We now describe an instantiation of PolicySmith to find
instance-optimal eviction policies for web caches. Our pro-
totype is built on libCacheSim [32], a high-performance web
cache simulator with an event-driven interface. We describe
our prototype design (§4.1), followed by results (§4.2).

1All code used for these case studies is available at https://github.com/ldos-
project/policysmith

https://github.com/ldos-project/policysmith
https://github.com/ldos-project/policysmith

HotNets ’25, November 17–18, 2025, College Park, MD, USA Dwivedula, Saxena, Akella, Chaudhuri, and Kim

Type Attributes

Per object Number of accesses (count), last access time,
time added to cache, object size

Aggregates Percentiles over access counts, ages, or sizes
(e.g., p50 size in bytes of all objects in cache).

History List of recently evicted objects, along with
(timestamp, access count, age) at eviction.

Table 1: Features available to priority().

4.1 Design

4.1.1 Tradeoffs in template design. Designing an effective
Template for heuristic generation in PolicySmith requires
deciding which parts of the heuristic should be exposed to
the Generator and which to hold fixed. Many heuristics
(including web caching) naturally consist of two parts: state
management (e.g., tracking metadata) and decision-making
logic (e.g., choosing what to evict).
One option is to use the Generator to synthesize both.

However, this requires the LLM to coordinate logic and state
across multiple interdependent functions. This increases the
size of each candidate heuristic, increases the computational
cost, and is more likely to result in errors due to complexity.
At the other extreme, we could fix the state management—i.e.,
the data structures used to track cache metadata—to match
a known policy (e.g., GDSF [15], ARC [36]) and evolve only
the decision logic. While this simplifies code generation, it
severely limits what can be discovered: it becomes impossi-
ble to discover heuristics that depend on richer signals like
access history, temporal patterns, or global cache statistics.
4.1.2 Template definition. For this case study, we use a Tem-
plate that favors simplicity and ease of generation. In our
design, object metadata is stored in a priority queue, with
the position determined by a customizable priority() func-
tion, that is synthesized by the Generator. This priority
function is invoked on each access or insertion and updates
the object’s priority score; when needed, the object with
the lowest score is evicted. To support diverse strategies,
priority() has access to a rich set of features (Table 1) de-
signed as a superset of the features used by existing caching
policies. This enables the discovery of varied heuristics with-
out changing the underlying queue structure or interface.
The resulting heuristic may incur higher overhead than

policies like LRU or FIFO, due to O(log N) priority updates
on each access. This may be acceptable for caches with rela-
tively fewer objects (our focus in this case study). For caches
where the overhead is prohibitive, alternative Template de-
signs with stricter constraints, such as using approximate
structures like soft heaps [12], may be needed.
4.1.3 Generator. Because our Template is narrow and self-
contained, we use a lightweight LLM, GPT-4o mini [29] via

the OpenAI API, for heuristic generation. Using a smaller
model like this keeps generation fast and inexpensive; more
broadly, the complexity of the Template governs the sophis-
tication of the required Generator. As templates become
richer or span multiple functions, they may require larger,
more capable models to handle reasoning and coordination.
As LLMs continue to improve, we expect this design space to
widen, enabling the evolution of heuristics in more complex
templates. The narrow Template implies that most errors
surface as build failures, allowing for a simple Checker that
automatically feeds errors back to the Generator.

4.1.4 Context-specific evaluator. In caching, the context is
defined by the cache size (typically constrained by hardware)
and the access patterns of requests (i.e., the workload). For our
case study, we use two real-world block I/O trace datasets:
CloudPhysics [61] (with 105 week-long traces from diverse
VMs) and Microsoft Research Cambridge (MSR) dataset [40]
(with 14 traces from production servers). In our case study,
the Evaluator scores candidate heuristics by running them
on a single block I/O trace from these datasets, for a fixed
cache size (10% of the trace footprint). Each pair (trace, cache
size) defines a distinct context, and the objective is to mini-
mize the object miss rate. While we define context narrowly
for simplicity, one could alternatively treat an entire distri-
bution of traces—e.g., a sample from all 105 CloudPhysics
traces—as a single, broader context, evaluating heuristics
based on an aggregate metric such as average hit rate.

4.2 Results

4.2.1 Methodology. We select one CloudPhysics trace (w89)
and use it as the context. The prompt to the Generator in-
cludes: a natural language description of our priority queue
interface and available features (Table 1), the function signa-
ture for priority(), and example priority functions seeded
at the start of the search—namely, for LRU and LFU. In each
round of PolicySmith, we prompt the Generator repeat-
edly to generate 25 candidate heuristics, which are then eval-
uated by the Evaluator. The top two performing heuristics
across all previous rounds are then used as examples in the
next round. This process is repeated 20 times, yielding a
total of 500 heuristics. The best-performing heuristic from
this search, referred to as Heuristic A, is shown in Listing 1.
We repeat this process independently for three more Cloud-
Physics traces to obtain heuristics B, C, and D, and on four
MSR traces to obtain heuristicsW, X, Y andZ.

4.2.2 Baselines and Metrics. We use fourteen eviction algo-
rithms as our baselines: GDSF [15], S3-FIFO [64], SIEVE [69],
LIRS [30], LHD [7], Cacheus [48], FIFO-Reinsertion [16] (de-
noted FIFO-Re), LeCaR [60], SR-LFU [48], CR-LRU [48], LRU,
MRU, and FIFO. For each caching heuristic, we report the

Man-Made Heuristics Are Dead. Long Live Code Generators! HotNets ’25, November 17–18, 2025, College Park, MD, USA

improvement in the miss ratios over a fixed baseline (FIFO),
similar to how [64, 69] report their results.

4.2.3 Instance-optimality of synthesized heuristics. All
heuristics produced by PolicySmith (A–D and W–Z) ei-
ther match or outperform all 14 baselines for their original
context (i.e., the trace used in that instance’s Evaluator),
demonstrating that PolicySmith can tailor heuristics for
each context. Additionally, we evaluate each PolicySmith-
generated heuristic not just on its original trace, but across
all other traces within the same dataset. Table 2 summarizes
this: for instance, Heuristic A, generated using trace w89,
outperforms all baselines on 48% of CloudPhysics traces;
similarly, Heuristic X does so for 64% of MSR traces. This
suggests that traces within a dataset may share structural
similarities (e.g., request access patterns), allowing heuristics
tuned on one to remain competitive on others.

While generalization is not our goal, future instantiations
of PolicySmith could also define context more broadly, e.g.,
by using multiple similar traces in the Evaluator. Our find-
ings also indicate that the discovered heuristics do not overfit
to a single trace.

4.2.4 Performance of PolicySmith. Figure 2 shows the per-
formance of baselines and the PolicySmith-synthesized
heuristics on all traces from CloudPhysics and MSR datasets.
Notably, Heuristic A and Heuristic Y achieve the second-
highest average performance (surpassed only by GDSF) for
CloudPhysics and MSR datasets, respectively.
The figures also include two oracles: (1) the baseline ora-

cle (B-Oracle), which selects the best-performing baseline
(§4.2.2) for each trace, and (2) the PolicySmith-oracle (PS-
Oracle), which selects the best heuristic from both the base-
lines and PolicySmith-synthesized heuristics. These oracles
model ideal runtime adaptation (§3.1), perfectly identifying
context and selecting the best heuristic for each trace. They
serve as upper bounds on expert performance. The PS-Oracle
has a 2% higher improvement over FIFO than the baseline
oracle, demonstrating the additional performance gains pos-
sible with the addition of PolicySmith-generated heuristics.

4.2.5 Example of evolved heuristic. Listing 1 shows Heuris-
tic A, the best performing heuristic we found for Cloud-
Physics. All of the code in the block, except the function
prototype, was generated completely by the LLM. We see
that the LLM uses the features provided (Table 1) in interest-
ing ways: such as penalizing objects that are old (lines 4, 13)
or big (lines 5, 15) and preserving small objects (line 16) or
frequent (lines 8, 18). As discussed in §4.2.1, the initial seed
heuristics provided to PolicySmith are simple algorithms—
LRU and LFU—that can be implemented in the priority func-
tion in a single line, e.g., by returning obj_info.count and
obj_info.last_accessed for LFU and LRU, respectively.

4.2.6 Computational cost. The search for heuristic A re-
quired 5.5 CPU-hours to evaluate all candidate heuristics. It
also used 800k input tokens and 300k output tokens with the
GPT-4o-mini model. The total cost of the OpenAI API for
the eight runs in this section was approximately USD $7.

5 Case Study: Congestion Control

In this section, we explore whether PolicySmith can be
extended to a more demanding setting: evolving heuristics
in the Linux kernel. Modern kernels house several policies
like TCP congestion control [1, 6, 11, 25], packet schedul-
ing [22, 46, 53, 57], and block I/O scheduling [27, 47, 54], that
have been shaped by decades of manual tuning for specific
contexts.

Instantiating PolicySmith to perform policy search in the
kernel is particularly challenging for two core reasons. First,
the kernel programming environment is highly constrained
(e.g., floating-point ops disallowed, idiosyncratic patterns to
access registers, BPF maps, etc). These constraints make code
generation especially difficult for the Generators, which
struggle to produce syntactically and semantically valid code
in such narrow, domain-specific contexts [24]. Second, ker-
nel development comes with strict safety and performance
requirements: bugs can lead to kernel panics, and even mi-
nor inefficiencies can degrade system-wide behavior. This
makes the design of the Checker and Evaluator critical.
To evaluate whether these challenges can be overcome, we
instantiate PolicySmith in the context of TCP congestion
control. This case study is not aimed as a search for new
instance-optimal algorithms, but as a focused case study to
test whether PolicySmith can navigate the constraints and
risks of kernel-space policy generation.

5.0.1 Template design. The Linux kernel requires conges-
tion control algorithms to implement five event-driven call-
backs that update the congestion window (cwnd) in response
to packet-level events. Following the Template design used
for caching (§4.1.2), we isolate decision logic from state
management, exposing only the decision making function
(cong_control) to the Generator. This function is provided
with a rich set of features, such as previous cwnd, minimum
RTT, inflight bytes, among others. To enable reasoning over
history, our Template also provides history arrays - time
series arrays that capture smoothed versions of these metrics
over the last 10 RTT intervals [66].

5.0.2 Template and Checker. We implement our Template
as a Linux kernel module. However, rather than compiling
LLM-generated code directly into the kernel, we offload the
generated logic to a dynamically attached eBPF probe that
is attached to the cong_control Linux kernel function. At
runtime, whenever this function is invoked, the probe is
triggered as well. The eBPF program executes the generated

HotNets ’25, November 17–18, 2025, College Park, MD, USA Dwivedula, Saxena, Akella, Chaudhuri, and Kim

(a) CloudPhysics Traces (b) MSR Traces

Figure 2: Miss ratio improvements over FIFO for all traces in a dataset (higher is better,

triangles indicate mean, heuristics ordered left to right by increasing average). Top

five performing baselines shown in plot for brevity.

Dataset %age of traces

CloudPhysics A (48%) B (42%)
C (14%) D (31%)

MSR W (57%) X (64%)
Y (57%) Z (21%)

Table 2: Performance of discovered

heuristics: proportion of traces in the

dataset where synthesized heuristic

outperforms all baselines.

logic, computes the updated decision (i.e., cwnd), and writes
the result to a BPF map. This design ensures that all candi-
date programs pass the eBPF verifier [52] before execution -
which acts as the Checker in our framework. This pattern
– using a kernel module for scaffolding and template logic,
combined with an eBPF probe for executing generated code
and communicating via a BPF map – is a general mecha-
nism that can be applied to other kernel components such
as packet schedulers, I/O controllers, or memory managers.

5.0.3 Preliminary Results. We generated 100 candidate con-
gestion control heuristics and attempted to compile them
into eBPF programs. Only 63% of the candidates passed the
eBPF verifier on the first try, and an additional 19% success-
fully compiled after the Generator was provided with the
stderr. The most common causes of errors were the use of
floating-point arithmetic and missing checks for division by
zero. This compilation rate for kernel code is substantially
lower than what we observed for caching: where 92% of
candidates compiled in the first pass itself.

1 priority(now , obj_id , obj_info , counts , ages ,
sizes , history):

2 score = obj_info.count * 20;
3 age = now - obj_info.last_accessed;
4 score -= age /300;
5 score -= obj_info.size /500;
6 if (history.contains(obj_id)){
7 h = history.get_metadata(obj_id);
8 score += h->count *15;
9 score += h->age_at_eviction_time /150;
10 }
11 else score -=40;
12 recent = ages.percentile (0.75);
13 if (obj_info.last_accessed <recent) score -=30;
14 big = sizes.percentile (0.75);
15 if (obj_info.size > big) score -=25;
16 else score +=10;
17 frequent = counts.percentile (0.7);
18 score += (obj_info.count >frequent) ? 50:-5;
19 if (age < 1000) score +=25;
20 if (obj_info.count < 3) score -= 15;
21 return score;

Listing 1: A heuristic discovered by PolicySmith.

We evaluated the heuristics that compiled successfully
on a 12 Mbps, 20ms delay emulated link [42]. The result-
ing behaviors varied widely: bandwidth utilizations ranged
from 23% to 98%, and average queuing delays spanned from
2ms to 40ms. This variance illustrates the diversity of poli-
cies that can be explored using automated strategies like
PolicySmith.

6 Discussion

Per-Instance Specialization in Practice. Our thesis explicitly
abandons the pursuit of “universal” heuristics. Instead, we
target instance-optimality—generating code tailored to each
workload, hardware target, and objective function. This spe-
cialization raises new challenges: How do we reliably detect
when the instance has changed? Can we incrementally up-
date policies? What abstractions enable policy reuse across
similar contexts? These are tantalizing open questions, with
only a few having initial answers (e.g., guardrails [50]).
Per-Policy vs. End-to-End Coordination. Policy synthesis

today often targets individual components (e.g., a conges-
tion control algorithm or cache eviction strategy). But in
real systems, these policies interact—coordinating across the
network stack, storage hierarchy, and compute resources. A
key research direction is to extend synthesis to reason about
interactions between synthesized policies, or even synthesize
policies end-to-end across components to achieve global ob-
jectives. Can we express cross-cutting goals and constraints?
Can LLMs or other program synthesis tools understand and
generate such coordinated logic?
Evaluation Without Deployment. Offline policy synthesis

hinges on the ability to evaluate candidate policies without
full deployment. This raises questions about test harness
fidelity, simulation accuracy, and robustness to distribution
shift. For safety- or latency-critical systems, policy evaluation
must ensure that synthesized logic is not just performant, but
correct. Integrating synthesis with formal methods, fuzzing,
or worst-case scenario testing may help bridge this gap.

Trade-offs between Expressivity and Interpretability.Models
like transformers can capture complex feature interactions

Man-Made Heuristics Are Dead. Long Live Code Generators! HotNets ’25, November 17–18, 2025, College Park, MD, USA

via attention, enabling behaviors beyond traditional human-
designed heuristics, which are often shallow and simplified.
LLM-generated code may offer a middle ground – more ex-
pressive than typical handwritten logic, yet still interpretable
and efficient. Moreover, LLMs can be tuned to produce sim-
pler code, preserving interpretability when needed.

Tools, Workflow, and Developer Experience. In this new par-
adigm, the “programmer” becomes a supervisor of synthesis,
not the author of logic. This shift requires a rethink of de-
veloper tools: how to prompt, debug, validate, and evolve
synthesized policies. Understanding how systems engineers
interact with these tools—and how to guide synthesis with
expert insight—is a key opportunity.

7 Related Work

Prior work, such as [38, 56, 57], have hinted at the lack of a
universal heuristic and that instance-optimal heuristics are
needed for various domains. While these efforts propose pro-
grammable interfaces, they still rely on developers to craft
optimal policies. In contrast, PolicySmith automatically dis-
covers effective heuristics given such an interface.
Other approaches use solvers [3, 21] or program

search [35] to generate code, but require detailed system
models. PolicySmith avoids these challenges by using high-
level specifications, relying on Generator and Evaluator
to search without needing a formal model.
There is a substantial body of recent work on coding

agents that combine LLM queries and evolutionary search.
For example, FunSearch [49] uses such an approach for au-
tomated discovery of mathematically interesting artifacts;
LaSR [23] and LLMSR [55] use the approach for scientific dis-
covery; EvoPrompting uses it for neural architecture search;
and AlphaEvolve [43] uses it for a range of tasks from math-
ematical discovery to the synthesis of scheduling heuristics.
Our proposed approach is the first to generalize these meth-
ods into a unified approach to system policies.

In the context of systems policies, prior work has explored
the use of LLMs to automate specific pieces of policy de-
sign: such as feature engineering [26], explaining heuristic
behavior [34, 45], or synthesizing router configurations [39].

8 Acknowledgements

This work was supported by the U.S. National Science
Foundation (NSF) Grant Numbers 2326576 and 2212559.
Dwivedula was supported with an Amazon AI Fellowship.

References

[1] Soheil Abbasloo, Yang Xu, and H Jonathan Chao. 2019. C2TCP: A
flexible cellular TCP tomeet stringent delay requirements. IEEE Journal
on Selected Areas in Communications 37, 4 (2019), 918–932.

[2] Soheil Abbasloo, Chen-Yu Yen, and H. Jonathan Chao. 2020. Classic
Meets Modern: a Pragmatic Learning-Based Congestion Control for
the Internet. In Proceedings of the Annual Conference of the ACM Special

Interest Group on Data Communication on the Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication (Virtual
Event, USA) (SIGCOMM ’20). Association for Computing Machinery,
New York, NY, USA, 632–647. https://doi.org/10.1145/3387514.3405892

[3] Anup Agarwal, Venkat Arun, Devdeep Ray, Ruben Martins, and Srini-
vasan Seshan. 2022. Automating network heuristic design and analysis.
In Proceedings of the 21st ACM Workshop on Hot Topics in Networks
(Austin, Texas) (HotNets ’22). Association for Computing Machinery,
New York, NY, USA, 8–16. https://doi.org/10.1145/3563766.3564085

[4] Ibrahim Umit Akgun, Ali Selman Aydin, and Erez Zadok. 2020. KMLIB:
Towards machine learning for operating systems. In Proceedings of the
On-Device Intelligence Workshop, co-located with the MLSys Conference.
1–6.

[5] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram
Venkataraman, Minlan Yu, and Ming Zhang. 2017. CherryPick: Adap-
tively Unearthing the Best Cloud Configurations for Big Data Ana-
lytics. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). USENIX Association, Boston, MA, 469–
482. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/alipourfard

[6] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical {Delay-
Based} congestion control for the internet. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18). USENIX
Association, Renton, WA, 329–342.

[7] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. 2018. {LHD}:
Improving cache hit rate by maximizing hit density. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18). USENIX Association, Renton, WA, 389–403. https://www.usenix.
org/conference/nsdi18/presentation/beckmann

[8] Benjamin Berg, Daniel S Berger, Sara McAllister, Isaac Grosof, Sathya
Gunasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann,
Mor Harchol-Balter, et al. 2020. The {CacheLib} caching engine: De-
sign and experiences at scale. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). USENIX Association,
753–768. https://www.usenix.org/conference/osdi20/presentation/
berg

[9] Daniel S Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and
Mor Harchol-Balter. 2018. {RobinHood}: Tail Latency Aware Caching–
Dynamic Reallocation from {Cache-Rich} to {Cache-Poor}. In 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). USENIX Association, Carlsbad, CA, 195–212.

[10] Xuechun Cao, Shaurya Patel, Soo Yee Lim, Xueyuan Han, and Thomas
Pasquier. 2024. FetchBPF: Customizable Prefetching Policies in Linux
with eBPF. In 2024 USENIX Annual Technical Conference (USENIX ATC
24). USENIX Association, Santa Clara, CA, 369–378. https://www.
usenix.org/conference/atc24/presentation/cao

[11] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. 2017. BBR: Congestion-based conges-
tion control. Commun. ACM 60, 2 (2017), 58–66.

[12] Bernard Chazelle. 2000. The soft heap: an approximate priority queue
with optimal error rate. Journal of the ACM (JACM) 47, 6 (2000),
1012–1027.

[13] Angelica Chen, David Dohan, and David So. 2023. Evoprompting:
Language models for code-level neural architecture search. Advances
in neural information processing systems 36 (2023), 7787–7817.

[14] Jiayi Chen, Nihal Sharma, Tarannum Khan, Shu Liu, Brian Chang,
Aditya Akella, Sanjay Shakkottai, and Ramesh K Sitaraman. 2023. Dar-
win: Flexible Learning-based CDN Caching. In Proceedings of the ACM
SIGCOMM 2023 Conference (New York, NY, USA) (ACM SIGCOMM ’23).
Association for Computing Machinery, New York, NY, USA, 981–999.
https://doi.org/10.1145/3603269.3604863

https://doi.org/10.1145/3387514.3405892
https://doi.org/10.1145/3563766.3564085
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://www.usenix.org/conference/nsdi18/presentation/beckmann
https://www.usenix.org/conference/nsdi18/presentation/beckmann
https://www.usenix.org/conference/osdi20/presentation/berg
https://www.usenix.org/conference/osdi20/presentation/berg
https://www.usenix.org/conference/atc24/presentation/cao
https://www.usenix.org/conference/atc24/presentation/cao
https://doi.org/10.1145/3603269.3604863

HotNets ’25, November 17–18, 2025, College Park, MD, USA Dwivedula, Saxena, Akella, Chaudhuri, and Kim

[15] Ludmila Cherkasova. 1998. Improving WWW proxies performance with
greedy-dual-size-frequency caching policy. Hewlett-Packard Laborato-
ries, Palo Alto, CA, USA.

[16] Fernando J Corbato. 1968. A paging experiment with the multics system.
Massachusetts Institute of Technology, Cambridge, MA.

[17] Jonathan Corbet. 2018. Let them run cake. https://lwn.net/Articles/
758353/

[18] Gil Einziger, Roy Friedman, and Ben Manes. 2017. Tinylfu: A highly
efficient cache admission policy. ACM Transactions on Storage (ToS)
13, 4 (2017), 1–31.

[19] Henrique Fingler, Isha Tarte, Hangchen Yu, Ariel Szekely, Bodun Hu,
Aditya Akella, and Christopher J. Rossbach. 2023. Towards a Machine
Learning-Assisted Kernel with LAKE. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (Vancouver, BC, Canada)
(ASPLOS 2023). Association for Computing Machinery, New York, NY,
USA, 846–861. https://doi.org/10.1145/3575693.3575697

[20] Xiangyu Gao, Divya Raghunathan, Ruijie Fang, Tao Wang, Xiaotong
Zhu, Anirudh Sivaraman, Srinivas Narayana, and Aarti Gupta. 2023.
CaT: A Solver-Aided Compiler for Packet-Processing Pipelines. In
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
3 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Comput-
ing Machinery, New York, NY, USA, 72–88. https://doi.org/10.1145/
3582016.3582036

[21] Xiangyu Gao, Divya Raghunathan, Ruijie Fang, Tao Wang, Xiaotong
Zhu, Anirudh Sivaraman, Srinivas Narayana, and Aarti Gupta. 2023.
CaT: A Solver-Aided Compiler for Packet-Processing Pipelines. In
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
3 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Comput-
ing Machinery, New York, NY, USA, 72–88. https://doi.org/10.1145/
3582016.3582036

[22] P. Goyal, H.M. Vin, and Haichen Cheng. 1997. Start-time fair queue-
ing: a scheduling algorithm for integrated services packet switching
networks. IEEE/ACM Transactions on Networking 5, 5 (1997), 690–704.
https://doi.org/10.1109/90.649569

[23] Arya Grayeli, Atharva Sehgal, Omar Costilla Reyes, Miles Cranmer,
and Swarat Chaudhuri. 2024. Symbolic regression with a learned
concept library. Advances in Neural Information Processing Systems 37
(2024), 44678–44709.

[24] Xiaodong Gu, Meng Chen, Yalan Lin, Yuhan Hu, Hongyu Zhang,
ChengchengWan, ZhaoWei, Yong Xu, and JuhongWang. 2025. On the
Effectiveness of Large Language Models in Domain-Specific Code Gen-
eration. ACM Transactions on Software Engineering and Methodology
34, 3, Article 78 (Feb. 2025), 22 pages. https://doi.org/10.1145/3697012

[25] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-
friendly high-speed TCP variant. ACM SIGOPS operating systems
review 42, 5 (2008), 64–74.

[26] ZhiyuanHe, Aashish Gottipati, Lili Qiu, Xufang Luo, Kenuo Xu, Yuqing
Yang, and Francis Y. Yan. 2024. Designing Network Algorithms via
Large Language Models. In Proceedings of the 23rd ACM Workshop on
Hot Topics in Networks (Irvine, CA, USA) (HotNets ’24). Association for
Computing Machinery, New York, NY, USA, 205–212. https://doi.org/
10.1145/3696348.3696868

[27] Mohammad Hedayati, Kai Shen, Michael L. Scott, and Mike Marty.
2019. Multi-Queue Fair Queuing. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19). USENIX Association, Renton, WA, 301–
314. http://www.usenix.org/conference/atc19/presentation/hedayati-
queue

[28] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng,
Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing

Qin, et al. 2025. A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions. ACM Transac-
tions on Information Systems 43, 2 (2025), 1–55.

[29] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya
Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec
Radford, et al. 2024. GPT-4o System Card. arXiv:2410.21276 [cs.CL]
https://arxiv.org/abs/2410.21276

[30] Song Jiang and Xiaodong Zhang. 2002. LIRS: An efficient low inter-
reference recency set replacement policy to improve buffer cache
performance. ACM SIGMETRICS Performance Evaluation Review 30, 1
(2002), 31–42.

[31] Theodore Johnson and Dennis Shasha. 1994. 2Q: A Low Overhead
High Performance Buffer Management Replacement Algorithm. In
Proceedings of the 20th International Conference on Very Large Data
Bases (VLDB ’94). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 439–450.

[32] Juncheng Yang (1a1a11a). 2023. libCacheSim: a high performance
library for building cache simulators. https://github.com/1a1a11a/
libCacheSim. Accessed: 2025-06-28.

[33] Mayuresh Kunjir, Brandon Fain, Kamesh Munagala, and Shivnath
Babu. 2017. ROBUS: fair cache allocation for data-parallel workloads.
In Proceedings of the 2017 ACM International Conference onManagement
of Data. Association for Computing Machinery, New York, NY, USA,
219–234.

[34] Franck Le, Mudhakar Srivatsa, Raghu Ganti, and Vyas Sekar. 2022. Re-
thinking data-driven networking with foundation models: challenges
and opportunities. In Proceedings of the 21st ACM Workshop on Hot
Topics in Networks. Association for Computing Machinery, New York,
NY, USA, 188–197. https://doi.org/10.1145/3035918.3064018

[35] Henry Massalin. 1987. Superoptimizer: a look at the smallest program.
In Proceedings of the Second International Conference on Architectual
Support for Programming Languages and Operating Systems (Palo Alto,
California, USA) (ASPLOS II). Association for Computing Machinery,
New York, NY, USA, 122–126. https://doi.org/10.1145/36206.36194

[36] Nimrod Megiddo and Dharmendra S Modha. 2003. {ARC}: A {Self-
Tuning}, low overhead replacement cache. In 2nd USENIX Conference
on File and Storage Technologies (FAST 03). USENIX Association, San
Francisco, CA, USA.

[37] Zili Meng, Minhu Wang, Jiasong Bai, Mingwei Xu, Hongzi Mao, and
Hongxin Hu. 2020. Interpreting Deep Learning-Based Networking
Systems. In Proceedings of the Annual Conference of the ACM Special
Interest Group on Data Communication on the Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication (Virtual
Event, USA) (SIGCOMM ’20). Association for Computing Machinery,
New York, NY, USA, 154–171. https://doi.org/10.1145/3387514.3405859

[38] Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
2015. Universal Packet Scheduling. In Proceedings of the 14th ACM
Workshop on Hot Topics in Networks (Philadelphia, PA, USA) (HotNets-
XIV). Association for Computing Machinery, New York, NY, USA,
Article 24, 7 pages. https://doi.org/10.1145/2834050.2834085

[39] Rajdeep Mondal, Alan Tang, Ryan Beckett, Todd Millstein, and George
Varghese. 2023. What do LLMs need to synthesize correct router
configurations?. In Proceedings of the 22nd ACM Workshop on Hot
Topics in Networks. Association for Computing Machinery, New York,
NY, USA, 189–195.

[40] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. 2008.
Write off-loading: Practical power management for enterprise storage.
ACM Transactions on Storage (TOS) 4, 3 (2008), 1–23.

[41] Usama Naseer and Theophilus A. Benson. 2022. Configanator: A Data-
driven Approach to Improving CDN Performance.. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22).
USENIX Association, Renton, WA, 1135–1158. https://www.usenix.

https://lwn.net/Articles/758353/
https://lwn.net/Articles/758353/
https://doi.org/10.1145/3575693.3575697
https://doi.org/10.1145/3582016.3582036
https://doi.org/10.1145/3582016.3582036
https://doi.org/10.1145/3582016.3582036
https://doi.org/10.1145/3582016.3582036
https://doi.org/10.1109/90.649569
https://doi.org/10.1145/3697012
https://doi.org/10.1145/3696348.3696868
https://doi.org/10.1145/3696348.3696868
http://www.usenix.org/conference/atc19/presentation/hedayati-queue
http://www.usenix.org/conference/atc19/presentation/hedayati-queue
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://github.com/1a1a11a/libCacheSim
https://github.com/1a1a11a/libCacheSim
https://doi.org/10.1145/3035918.3064018
https://doi.org/10.1145/36206.36194
https://doi.org/10.1145/3387514.3405859
https://doi.org/10.1145/2834050.2834085
https://www.usenix.org/conference/nsdi22/presentation/naseer
https://www.usenix.org/conference/nsdi22/presentation/naseer

Man-Made Heuristics Are Dead. Long Live Code Generators! HotNets ’25, November 17–18, 2025, College Park, MD, USA

org/conference/nsdi22/presentation/naseer
[42] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith

Winstein, James Mickens, and Hari Balakrishnan. 2015. Mahimahi:
accurate {Record-and-Replay} for {HTTP}. In 2015 USENIX Annual
Technical Conference (USENIX ATC 15). USENIX Association, Santa
Clara, CA, USA, 417–429.

[43] Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont,
Po-Sen Huang, Adam Zsolt Wagner, Sergey Shirobokov, Borislav
Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian, M. Pawan Ku-
mar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies,
Sebastian Nowozin, Pushmeet Kohli, and Matej Balog. 2025. Al-
phaEvolve: A coding agent for scientific and algorithmic discovery.
arXiv:2506.13131 [cs.AI] https://arxiv.org/abs/2506.13131

[44] Pedro A. Ortega, Markus Kunesch, Grégoire Delétang, Tim Genewein,
Jordi Grau-Moya, Joel Veness, Jonas Buchli, Jonas Degrave, Bilal Piot,
Julien Perolat, Tom Everitt, Corentin Tallec, Emilio Parisotto, Tom
Erez, Yutian Chen, Scott Reed, Marcus Hutter, Nando de Freitas, and
Shane Legg. 2021. Shaking the foundations: delusions in sequence
models for interaction and control. arXiv:2110.10819 [cs.LG] https:
//arxiv.org/abs/2110.10819

[45] Sagar Patel, DongsuHan, Nina Narodystka, and Sangeetha Abdu Jyothi.
2024. Toward Trustworthy Learning-Enabled Systems with Concept-
Based Explanations. In Proceedings of the 23rd ACM Workshop on Hot
Topics in Networks. Association for Computing Machinery, New York,
NY, USA, 60–67.

[46] Sriram Ramabhadran and Joseph Pasquale. 2003. Stratified round
robin: A low complexity packet scheduler with bandwidth fairness
and bounded delay. In Proceedings of the 2003 conference on applications,
technologies, architectures, and protocols for computer communications.
Association for Computing Machinery, New York, NY, USA, 239–250.
https://doi.org/10.1145/863955.863983

[47] Zebin Ren, Krijn Doekemeijer, and Animesh Trivedi. 2024. A System-
atic Configuration Space Exploration of the Linux Kyber I/O Scheduler.
In Companion of the 15th ACM/SPEC International Conference on Perfor-
mance Engineering (London, United Kingdom) (ICPE ’24 Companion).
Association for Computing Machinery, New York, NY, USA, 167–173.
https://doi.org/10.1145/3629527.3651416

[48] Liana V Rodriguez, Farzana Yusuf, Steven Lyons, Eysler Paz, Raju Ran-
gaswami, Jason Liu, Ming Zhao, and Giri Narasimhan. 2021. Learning
cache replacement with {CACHEUS}. In 19th USENIX Conference on
File and Storage Technologies (FAST 21). USENIX Association, 341–354.

[49] Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander
Novikov, Matej Balog, M Pawan Kumar, Emilien Dupont, Francisco JR
Ruiz, Jordan S Ellenberg, Pengming Wang, Omar Fawzi, et al. 2024.
Mathematical discoveries from program search with large language
models. Nature 625, 7995 (2024), 468–475.

[50] Divyanshu Saxena, Jiayi Chen, Sujay Yadalam, Yeonju Ro, Rohit
Dwivedula, Eric H Campbell, Aditya Akella, Christopher J Rossbach,
and Michael Swift. 2025. How I learned to stop worrying and love
learned OS policies. In Proceedings of the 2025 Workshop on Hot Topics
in Operating Systems. Association for Computing Machinery, New
York, NY, USA, 1–7.

[51] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic super-
optimization. ACM SIGARCH Computer Architecture News 41, 1 (2013),
305–316.

[52] Matan Shachnai, Harishankar Vishwanathan, Srinivas Narayana, and
Santosh Nagarakatte. 2024. Fixing Latent Unsound Abstract Operators
in the eBPF Verifier of the Linux Kernel. In International Static Analysis
Symposium. Springer, Springer Nature Switzerland, Cham, 386–406.

[53] Erfan Sharafzadeh, Raymond Matson, Jean Tourrilhes, Puneet Sharma,
and Soudeh Ghorbani. 2025. {Self-Clocked}{Round-Robin} Packet
Scheduling. In 22nd USENIX Symposium on Networked Systems Design

and Implementation (NSDI 25). USENIX Association, Philadelphia, PA,
1437–1465.

[54] Kai Shen and Stan Park. 2013. {FlashFQ}: A fair queueing {I/O}
scheduler for {Flash-Based}{SSDs}. In 2013 USENIX Annual Technical
Conference (USENIX ATC 13). USENIX Association, San Jose, CA, 67–
78.

[55] Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Fa-
rimani, and Chandan K Reddy. 2024. Llm-sr: Scientific equation dis-
covery via programming with large language models. arXiv preprint
arXiv:2404.18400 (2024).

[56] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh,
Sharad Chole, Shang-Tse Chuang, Anurag Agrawal, Hari Balakr-
ishnan, Tom Edsall, Sachin Katti, and Nick McKeown. 2016. Pro-
grammable Packet Scheduling at Line Rate. In Proceedings of the 2016
ACM SIGCOMM Conference (Florianopolis, Brazil) (SIGCOMM ’16).
Association for Computing Machinery, New York, NY, USA, 44–57.
https://doi.org/10.1145/2934872.2934899

[57] Anirudh Sivaraman, Keith Winstein, Suvinay Subramanian, and Hari
Balakrishnan. 2013. No silver bullet: extending SDN to the data plane.
In Proceedings of the Twelfth ACM Workshop on Hot Topics in networks.
Association for Computing Machinery, New York, NY, USA, 1–7.

[58] Zhenyu Song, Daniel S Berger, Kai Li, and Wyatt Lloyd. 2020. Learn-
ing relaxed belady for content distribution network caching. In 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). USENIX Association, Santa Clara, CA, 529–544.

[59] Zhenyu Song, Kevin Chen, Nikhil Sarda, Deniz Altınbüken, Eugene
Brevdo, Jimmy Coleman, Xiao Ju, Pawel Jurczyk, Richard Schooler,
and Ramki Gummadi. 2023. {HALP}: Heuristic aided learned prefer-
ence eviction policy for {YouTube} content delivery network. In 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23). USENIX Association, Boston, MA, 1149–1163.

[60] Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Martinez, Steven
Lyons, Jason Liu, Raju Rangaswami, Ming Zhao, and Giri Narasimhan.
2018. Driving Cache Replacement with ML-based LeCaR. In 10th
USENIX Workshop on Hot Topics in Storage and File Systems (HotStor-
age 18). USENIX Association, Boston, MA. https://www.usenix.org/
conference/hotstorage18/presentation/vietri

[61] Carl A Waldspurger, Nohhyun Park, Alexander Garthwaite, and Irfan
Ahmad. 2015. Efficient {MRC} construction with {SHARDS}. In 13th
USENIX Conference on File and Storage Technologies (FAST 15). USENIX
Association, 95–110.

[62] Shibo Wang, Shusen Yang, Xiao Kong, Chenglei Wu, Longwei Jiang,
Chenren Xu, Cong Zhao, Xuesong Yang, Jianjun Xiao, Xin Liu, Changxi
Zheng, Jing Wang, and Honghao Liu. 2024. Pudica: Toward Near-
Zero Queuing Delay in Congestion Control for Cloud Gaming. In 21st
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 24). USENIX Association, Santa Clara, CA, 113–129. https:
//www.usenix.org/conference/nsdi24/presentation/wang-shibo

[63] Juncheng Yang, Ziming Mao, Yao Yue, and K. V. Rashmi. 2023.
GL-Cache: Group-level learning for efficient and high-performance
caching. In 21st USENIX Conference on File and Storage Technologies
(FAST 23). USENIX Association, Santa Clara, CA, 115–134. https:
//www.usenix.org/conference/fast23/presentation/yang-juncheng

[64] Juncheng Yang, Yazhuo Zhang, Ziyue Qiu, Yao Yue, and Rashmi
Vinayak. 2023. Fifo queues are all you need for cache eviction. In
Proceedings of the 29th Symposium on Operating Systems Principles.
Association for Computing Machinery, New York, NY, USA, 130–149.

[65] Tzu-Wei Yang, Seth Pollen, Mustafa Uysal, Arif Merchant, and Homer
Wolfmeister. 2022. {CacheSack}: Admission Optimization for Google
Datacenter Flash Caches. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22). USENIX Association, Carlsbad, CA, 1021–1036.

https://www.usenix.org/conference/nsdi22/presentation/naseer
https://arxiv.org/abs/2506.13131
https://arxiv.org/abs/2506.13131
https://arxiv.org/abs/2110.10819
https://arxiv.org/abs/2110.10819
https://arxiv.org/abs/2110.10819
https://doi.org/10.1145/863955.863983
https://doi.org/10.1145/3629527.3651416
https://doi.org/10.1145/2934872.2934899
https://www.usenix.org/conference/hotstorage18/presentation/vietri
https://www.usenix.org/conference/hotstorage18/presentation/vietri
https://www.usenix.org/conference/nsdi24/presentation/wang-shibo
https://www.usenix.org/conference/nsdi24/presentation/wang-shibo
https://www.usenix.org/conference/fast23/presentation/yang-juncheng
https://www.usenix.org/conference/fast23/presentation/yang-juncheng

HotNets ’25, November 17–18, 2025, College Park, MD, USA Dwivedula, Saxena, Akella, Chaudhuri, and Kim

[66] Chen-Yu Yen, Soheil Abbasloo, and H. Jonathan Chao. 2023. Computers
Can Learn from the Heuristic Designs and Master Internet Congestion
Control. In Proceedings of the ACM SIGCOMM 2023 Conference (New
York, NY, USA) (ACM SIGCOMM ’23). Association for Computing
Machinery, New York, NY, USA, 255–274. https://doi.org/10.1145/
3603269.3604838

[67] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu
Xing, YangtaoWang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang
Li. 2019. An End-to-End Automatic Cloud Database Tuning System
Using Deep Reinforcement Learning. In Proceedings of the 2019 Inter-
national Conference on Management of Data (Amsterdam, Netherlands)
(SIGMOD ’19). Association for Computing Machinery, New York, NY,
USA, 415–432. https://doi.org/10.1145/3299869.3300085

[68] Junxue Zhang, Chaoliang Zeng, Hong Zhang, Shuihai Hu, and Kai
Chen. 2022. LiteFlow: towards high-performance adaptive neural

networks for kernel datapath. In Proceedings of the ACM SIGCOMM
2022 Conference (Amsterdam, Netherlands) (SIGCOMM ’22). Asso-
ciation for Computing Machinery, New York, NY, USA, 414–427.
https://doi.org/10.1145/3544216.3544229

[69] Yazhuo Zhang, Juncheng Yang, Yao Yue, Ymir Vigfusson, and K.V.
Rashmi. 2024. SIEVE is Simpler than LRU: an Efficient Turn-Key
Eviction Algorithm for Web Caches. In 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI 24). USENIX
Association, Santa Clara, CA, 1229–1246. https://www.usenix.org/
conference/nsdi24/presentation/zhang-yazhuo

[70] Wenbin Zhou, Zhixiong Niu, Yongqiang Xiong, Juan Fang, and Qian
Wang. 2025. 3L-Cache: Low Overhead and Precise Learning-based
Eviction Policy for Caches. In Proceedings of the 23rd USENIX Confer-
ence on File and Storage Technologies. USENIX Association, Santa Clara,
CA, 237–254.

https://doi.org/10.1145/3603269.3604838
https://doi.org/10.1145/3603269.3604838
https://doi.org/10.1145/3299869.3300085
https://doi.org/10.1145/3544216.3544229
https://www.usenix.org/conference/nsdi24/presentation/zhang-yazhuo
https://www.usenix.org/conference/nsdi24/presentation/zhang-yazhuo

	Abstract
	1 Introduction
	2 Heuristic Design: Status Quo and Vision
	3 PolicySmith
	3.1 Responding to Context Shifts

	4 Case Study: Web Caching
	4.1 Design
	4.2 Results

	5 Case Study: Congestion Control
	6 Discussion
	7 Related Work
	8 Acknowledgements
	References

