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Abstract

Policy design for various systems controllers has convention-
ally been a manual process, with domain experts carefully
tailoring heuristics for the specific instance in which the
policy will be deployed. In this paper, we re-imagine policy
design via a novel automated search technique fueled by
recent advances in generative models, specifically Large Lan-
guage Model (LLM)-driven code generation. We outline the
design and implementation of PolicySmith, a framework
that applies LLMs to synthesize instance-optimal heuristics.
We apply PolicySmith to two long-standing systems policies
- web caching and congestion control, highlighting the oppor-
tunities unraveled by this LLM-driven heuristic search. For
caching, PolicySmith discovers heuristics that outperform
established baselines on standard open-source traces. For
congestion control, we show that PolicySmith can generate
safe policies that integrate directly into the Linux kernel.
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1 Introduction

Systems research has long treated policy design as a manual
craft. Whether it is congestion control, caching, or schedul-
ing, performance-critical systems rely on heuristics hand-
written by domain experts, optimized for typical conditions,
and deployed as a static policy. Yet these policies are brittle,
degrading under new workloads, hardware, or objectives.
The standard response is to continually tune and re-

implement heuristics: we tweak congestion control algo-
rithms for new network environments [62], tailor prefetch-
ing and caching policies for emerging workloads [10] or
hardware [65], and evolve queueing disciplines for new per-
formance targets [17]. But this is an arms race we are losing.
We face rapid evolution in workloads, deployment settings,
and heterogeneous hardware. As such, the design space of
heuristics for most problems is complex and shifting in a
context-dependent manner. Human developers often cannot
discover "the right heuristics" fast enough.

Meanwhile, learning-based systems have shown that it is
possible to approach instance-optimality, i.e., finding the best
policy for a given context by learning from data. Prior work
in learned congestion control [2] and caching [58, 63, 70],
for example, demonstrates that data-driven policies, repre-
sented as neural networks, can significantly outperform fixed
heuristics. However, neural approaches come at a steep cost:
opaque behavior [37], complex training and deployment
pipelines [4, 19], inference overheads [19, 68], and safety
concerns [50] that preclude adoption in many environments.
Alternatively, we find that recent advancements in cod-

ing agents such as FunSearch [49], AlphaEvolve [43], and
EvoPrompting [13] present a powerful new opportunity for
policy design. These agents use a form of LLM-guided evo-
lutionary computation to synthesize expressive code that
maximizes quantitative reward functions. We propose to use
this approach to automatically synthesize system policies.
In our approach, policy design is re-imagined as an auto-

mated search problem, solved as often as needed using gen-
erative models to produce instance-optimal policy code. This
means that “intelligence” in systems no longer needs to re-
side in hard-coded rules or opaque neural network weights.
Instead, it could reside in the process by which policies are
generated. This enables a move away from deploying fixed
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logic to a pipeline that can automatically generate, evaluate,
and produce optimized code for each context. By pairing
LLMs with evolutionary search and test-time feedback, we
can explore vast policy spaces and discover high-performing
code that would be infeasible to author manually. This ap-
proach also avoids opaque learned models in favor of policy
code that is safer and more interpretable.
In the limit, this shift can unlock a future where systems

come with tailor-made, self-evolving policy logic, allowing
developers to simply control high-level specifications that
include metrics they care about, such as performance and an
upper bound on the costs incurred to "search" for the policy,
among other things.
One instantiation. To ground this idea, we sketch Poli-
cySmith, a prototype system that uses LLMs to synthesize
instance-optimal policies. Given an objective and test har-
ness, it generates, evaluates, and evolves policy code offline.
However, our broader contribution is not a tool—it is a call to
rethink the boundary between systems and machine learn-
ing, and to embrace a new model of policy design.

2 Heuristic Design: Status Quo and Vision

Systems research has seen a long history of heuristics, such
as cache eviction, congestion control, and queue schedul-
ing, being developed, modified, and fine-tuned for a specific
“context” which is defined by the workload (application and
traces) being supported by the heuristic, the desired objec-
tives (e.g., performance, utilization, fairness, scalability, etc.),
and the environment (e.g., hardware) where the heuristic is
running.
Taking the concrete example of web caching, different

eviction heuristics for specific traces, objectives, or deploy-
ment scenarios [7, 31, 36, 48, 59, 60, 64, 69]. ARC [36] and
SIEVE [69] perform well for large cache sizes by balancing
new and old objects. In contrast, TwoQ [31] and LHD [7]
perform well for smaller caches due to their ability to quickly
remove low-value objects. Cacheus [48] shows that depend-
ing on whether a workload consists of mostly new objects
(“scan workloads”) or mostly repeated objects (“churn work-
loads”), different expert algorithms perform better. Addition-
ally, heuristic design often takes into account end-to-end
objectives such as tail latency [9] and fairness [33], or system-
level constraints such as CPU overhead [59], lock-free de-
sign [64], and memory efficiency [18].
Because no single heuristic performs well across all

contexts, experts routinely invest significant time adapt-
ing or inventing new heuristics for new workloads, objec-
tives, and environments. This process—designing new algo-
rithms [7, 31, 64, 69], engineering feature sets for learned
models [59, 60, 63], and evaluating across diverse traces [59]
using simulators [32] or real-world systems [8]—is man-
ual and painstakingly slow. This problem is not limited to

Figure 1: PolicySmith overview

caching alone; it is widespread across several systems poli-
cies. As a result, complex systems (e.g., the Linux Kernel) of-
ten continue running suboptimal policies for years, because
discovering better ones requires developers with kernel ex-
pertise and is too labor-intensive. The ability to automatically
discover context-specific, incrementally better heuristics can
yield meaningful gains in terms of both performance metrics
of interest and manual effort involved.
Our vision is to automate the heuristic design process

so humans can focus on what matters most: defining what
they want. This includes both the intent—the goals/objec-
tives of the heuristic—and the space it operates in, shaped
by context and constraints. These choices require high-level
reasoning about system goals, tradeoffs (like fairness or live-
ness), and operator needs—which are difficult to formalize
and automate, and deeply benefit from human experience
and intuition. Once the intent and space are clear, generat-
ing heuristics becomes a search problem that can be scaled,
guided by feedback, and automated.
In particular, automating this search process is feasible

today because large language models (LLMs) are remark-
ably effective generators: they can quickly produce a wide
range of candidate heuristics, remixing and adapting known
techniques across domains. Many state-of-the-art heuristics,
such as SIEVE [69], ARC [36], and Cacheus [48], are delicate
recombinations and improvements of existing approaches.
Because LLMs have been pretrained on code and patterns
from across the stack, they are well-positioned to generate
candidate heuristics inspired by these recurring structures;
though inventing entirely new structures and principles may
still require human insight.

3 PolicySmith

To turn the vision of automated heuristic design into practice,
we build the PolicySmith framework (Fig 1) that separates
specification (user-defined) from policy search (automated).

The user is responsible for designing a Template, which
defines the space of programs to search, and an Evaluator
that runs candidate heuristics and returns a numeric score
indicative of how well it performed in the current deploy-
ment context. The Template contains a function signature
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or a partial code stub that specifies the semantics of what
the heuristic must implement. For example, in a caching sys-
tem, this might be a function that decides which object to
evict from a set of eviction candidates; for congestion control,
it could be event-driven functions that adjust the cwnd on
packet ACK or packet loss.

The Template, used by an LLM-based Generator to pro-
duce candidate heuristics, also contains natural-language
constraints that guide generation. These constraints describe
the constructs allowed in the heuristic, including which li-
braries may be imported, the states it can access, and any
behavioral or performance requirements. For example, con-
gestion control heuristics on the critical path in the kernel
must avoid floating-point arithmetic, locking, or unbounded
loops. In caching, constraints may require O(log N) com-
plexity, ruling out full-cache scans. Overall, the Template
(including the constraints) acts like a "design spec", ensuring
generated heuristics are efficient and deployable.

The LLM, of course, may produce code that does not honor
these constraints, due to hallucination [28, 44], producing
plausible yet non-conforming or incorrect code. To catch
such violations, users define a Checker that enforces syn-
tactic and semantic rules, and provides structured feedback
to help generators stay within spec.
With these components defined, the framework begins

its search loop. Motivated by recent coding agents such as
AlphaEvolve [43] and FunSearch [49], we leverage evolution-
ary search to explore the large space of programs defined by
the Template. This choice is motivated by the fact that the
space of “good" heuristics is discrete, combinatorially large,
and sparsely populated – making gradient-based methods
impractical and local search [51] limited in efficacy.
In our search process (Fig 1), an LLM-based Generator

synthesizes multiple candidate heuristics based on the Tem-
plate, which are scored by the context-specific Evalua-
tor, and the best-performing candidates are fed back as
examples in the next round. This loop continues for several
iterations, gradually steering the generator toward better-
performing heuristic code. At the end, PolicySmith outputs
a final heuristic tailored to the target context.

3.1 Responding to Context Shifts

PolicySmith generates instance-optimal heuristics for each
context, defined as a combination of the workload, hardware,
and the desired objectives. However, how is a context actually
delineated in practice? How do we identify when the deploy-
ment context has drifted enough to warrant re-synthesis?

3.1.1 Explicit context shifts. Some context changes might be
obvious. For instance, upgrading from HDDs to SSDs usually
requires a new block I/O scheduling heuristic [54] even if

nothing else changes (hardware change); different applica-
tion classes on the same hardware benefit from different pro-
cess scheduling [20] and networking queuing heuristics [57]
(workload change). In such scenarios, PolicySmith can be
invoked manually for each context.
3.1.2 Implicit context shifts. Context changes are not al-
ways readily apparent. A CDN server, for instance, may
experience shifts in access patterns due to the time of day,
even if the hardware and objectives remain unchanged. A
cloud provider may not have visibility into application-level
changes that affect the performance of heuristics. These drifts
degrade the performance of previously specialized heuristics
without triggering any explicit event.

To address this, prior work has developed runtime adap-
tation systems that leverage online techniques such as re-
inforcement learning [67], bayesian optimization [5], and
multi-armed bandits [14, 41] to identify context changes
and respond to them, by selecting a new heuristic or con-
figuration from a pre-defined set. These systems rely on
lightweight monitoring infrastructure (e.g., guardrails [50])
or clustering-based approaches [14] to detect context shifts.
PolicySmith complements these approaches: the same

monitoring signals that guide these systems can also trigger
PolicySmith automatically, allowing it to re-synthesize a
heuristic offline. Until a new, better heuristic is ready, the ex-
isting one continues to be used with degraded performance.
Over time, this enables building a library of PolicySmith-
generated heuristics, providing better options for an adapta-
tion system to choose from.

This paper does not focus on designing context-detection
or runtime-adaptation systems, and rather assumes such
triggers (manual or automated) are available. Given such
a trigger, the core question then becomes: can we reliably
synthesize effective heuristics for the new context? We will
explore this in two case studies1.
First (§4), we use PolicySmith to discover instance-

optimal cache eviction heuristics, illustrating its ability to
generate high-performing, context-specific policies. In the
second case study (§5), we use PolicySmith to evolve Linux
kernel code to synthesize congestion control heuristics,
demonstrating the feasibility of our vision even in highly
constrained, safety-critical systems such as the Linux kernel.

4 Case Study: Web Caching

We now describe an instantiation of PolicySmith to find
instance-optimal eviction policies for web caches. Our pro-
totype is built on libCacheSim [32], a high-performance web
cache simulator with an event-driven interface. We describe
our prototype design (§4.1), followed by results (§4.2).

1All code used for these case studies is available at https://github.com/ldos-
project/policysmith

https://github.com/ldos-project/policysmith
https://github.com/ldos-project/policysmith
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Type Attributes

Per object Number of accesses (count), last access time,
time added to cache, object size

Aggregates Percentiles over access counts, ages, or sizes
(e.g., p50 size in bytes of all objects in cache).

History List of recently evicted objects, along with
(timestamp, access count, age) at eviction.

Table 1: Features available to priority().

4.1 Design

4.1.1 Tradeoffs in template design. Designing an effective
Template for heuristic generation in PolicySmith requires
deciding which parts of the heuristic should be exposed to
the Generator and which to hold fixed. Many heuristics
(including web caching) naturally consist of two parts: state
management (e.g., tracking metadata) and decision-making
logic (e.g., choosing what to evict).
One option is to use the Generator to synthesize both.

However, this requires the LLM to coordinate logic and state
across multiple interdependent functions. This increases the
size of each candidate heuristic, increases the computational
cost, and is more likely to result in errors due to complexity.
At the other extreme, we could fix the state management—i.e.,
the data structures used to track cache metadata—to match
a known policy (e.g., GDSF [15], ARC [36]) and evolve only
the decision logic. While this simplifies code generation, it
severely limits what can be discovered: it becomes impossi-
ble to discover heuristics that depend on richer signals like
access history, temporal patterns, or global cache statistics.
4.1.2 Template definition. For this case study, we use a Tem-
plate that favors simplicity and ease of generation. In our
design, object metadata is stored in a priority queue, with
the position determined by a customizable priority() func-
tion, that is synthesized by the Generator. This priority
function is invoked on each access or insertion and updates
the object’s priority score; when needed, the object with
the lowest score is evicted. To support diverse strategies,
priority() has access to a rich set of features (Table 1) de-
signed as a superset of the features used by existing caching
policies. This enables the discovery of varied heuristics with-
out changing the underlying queue structure or interface.
The resulting heuristic may incur higher overhead than

policies like LRU or FIFO, due to O(log N) priority updates
on each access. This may be acceptable for caches with rela-
tively fewer objects (our focus in this case study). For caches
where the overhead is prohibitive, alternative Template de-
signs with stricter constraints, such as using approximate
structures like soft heaps [12], may be needed.
4.1.3 Generator. Because our Template is narrow and self-
contained, we use a lightweight LLM, GPT-4o mini [29] via

the OpenAI API, for heuristic generation. Using a smaller
model like this keeps generation fast and inexpensive; more
broadly, the complexity of the Template governs the sophis-
tication of the required Generator. As templates become
richer or span multiple functions, they may require larger,
more capable models to handle reasoning and coordination.
As LLMs continue to improve, we expect this design space to
widen, enabling the evolution of heuristics in more complex
templates. The narrow Template implies that most errors
surface as build failures, allowing for a simple Checker that
automatically feeds errors back to the Generator.

4.1.4 Context-specific evaluator. In caching, the context is
defined by the cache size (typically constrained by hardware)
and the access patterns of requests (i.e., the workload). For our
case study, we use two real-world block I/O trace datasets:
CloudPhysics [61] (with 105 week-long traces from diverse
VMs) and Microsoft Research Cambridge (MSR) dataset [40]
(with 14 traces from production servers). In our case study,
the Evaluator scores candidate heuristics by running them
on a single block I/O trace from these datasets, for a fixed
cache size (10% of the trace footprint). Each pair (trace, cache
size) defines a distinct context, and the objective is to mini-
mize the object miss rate. While we define context narrowly
for simplicity, one could alternatively treat an entire distri-
bution of traces—e.g., a sample from all 105 CloudPhysics
traces—as a single, broader context, evaluating heuristics
based on an aggregate metric such as average hit rate.

4.2 Results

4.2.1 Methodology. We select one CloudPhysics trace (w89)
and use it as the context. The prompt to the Generator in-
cludes: a natural language description of our priority queue
interface and available features (Table 1), the function signa-
ture for priority(), and example priority functions seeded
at the start of the search—namely, for LRU and LFU. In each
round of PolicySmith, we prompt the Generator repeat-
edly to generate 25 candidate heuristics, which are then eval-
uated by the Evaluator. The top two performing heuristics
across all previous rounds are then used as examples in the
next round. This process is repeated 20 times, yielding a
total of 500 heuristics. The best-performing heuristic from
this search, referred to as Heuristic A, is shown in Listing 1.
We repeat this process independently for three more Cloud-
Physics traces to obtain heuristics B, C, and D, and on four
MSR traces to obtain heuristicsW, X, Y andZ.

4.2.2 Baselines and Metrics. We use fourteen eviction algo-
rithms as our baselines: GDSF [15], S3-FIFO [64], SIEVE [69],
LIRS [30], LHD [7], Cacheus [48], FIFO-Reinsertion [16] (de-
noted FIFO-Re), LeCaR [60], SR-LFU [48], CR-LRU [48], LRU,
MRU, and FIFO. For each caching heuristic, we report the
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improvement in the miss ratios over a fixed baseline (FIFO),
similar to how [64, 69] report their results.

4.2.3 Instance-optimality of synthesized heuristics. All
heuristics produced by PolicySmith (A–D and W–Z) ei-
ther match or outperform all 14 baselines for their original
context (i.e., the trace used in that instance’s Evaluator),
demonstrating that PolicySmith can tailor heuristics for
each context. Additionally, we evaluate each PolicySmith-
generated heuristic not just on its original trace, but across
all other traces within the same dataset. Table 2 summarizes
this: for instance, Heuristic A, generated using trace w89,
outperforms all baselines on 48% of CloudPhysics traces;
similarly, Heuristic X does so for 64% of MSR traces. This
suggests that traces within a dataset may share structural
similarities (e.g., request access patterns), allowing heuristics
tuned on one to remain competitive on others.

While generalization is not our goal, future instantiations
of PolicySmith could also define context more broadly, e.g.,
by using multiple similar traces in the Evaluator. Our find-
ings also indicate that the discovered heuristics do not overfit
to a single trace.

4.2.4 Performance of PolicySmith. Figure 2 shows the per-
formance of baselines and the PolicySmith-synthesized
heuristics on all traces from CloudPhysics and MSR datasets.
Notably, Heuristic A and Heuristic Y achieve the second-
highest average performance (surpassed only by GDSF) for
CloudPhysics and MSR datasets, respectively.
The figures also include two oracles: (1) the baseline ora-

cle (B-Oracle), which selects the best-performing baseline
(§4.2.2) for each trace, and (2) the PolicySmith-oracle (PS-
Oracle), which selects the best heuristic from both the base-
lines and PolicySmith-synthesized heuristics. These oracles
model ideal runtime adaptation (§3.1), perfectly identifying
context and selecting the best heuristic for each trace. They
serve as upper bounds on expert performance. The PS-Oracle
has a 2% higher improvement over FIFO than the baseline
oracle, demonstrating the additional performance gains pos-
sible with the addition of PolicySmith-generated heuristics.

4.2.5 Example of evolved heuristic. Listing 1 shows Heuris-
tic A, the best performing heuristic we found for Cloud-
Physics. All of the code in the block, except the function
prototype, was generated completely by the LLM. We see
that the LLM uses the features provided (Table 1) in interest-
ing ways: such as penalizing objects that are old (lines 4, 13)
or big (lines 5, 15) and preserving small objects (line 16) or
frequent (lines 8, 18). As discussed in §4.2.1, the initial seed
heuristics provided to PolicySmith are simple algorithms—
LRU and LFU—that can be implemented in the priority func-
tion in a single line, e.g., by returning obj_info.count and
obj_info.last_accessed for LFU and LRU, respectively.

4.2.6 Computational cost. The search for heuristic A re-
quired 5.5 CPU-hours to evaluate all candidate heuristics. It
also used 800k input tokens and 300k output tokens with the
GPT-4o-mini model. The total cost of the OpenAI API for
the eight runs in this section was approximately USD $7.

5 Case Study: Congestion Control

In this section, we explore whether PolicySmith can be
extended to a more demanding setting: evolving heuristics
in the Linux kernel. Modern kernels house several policies
like TCP congestion control [1, 6, 11, 25], packet schedul-
ing [22, 46, 53, 57], and block I/O scheduling [27, 47, 54], that
have been shaped by decades of manual tuning for specific
contexts.

Instantiating PolicySmith to perform policy search in the
kernel is particularly challenging for two core reasons. First,
the kernel programming environment is highly constrained
(e.g., floating-point ops disallowed, idiosyncratic patterns to
access registers, BPF maps, etc). These constraints make code
generation especially difficult for the Generators, which
struggle to produce syntactically and semantically valid code
in such narrow, domain-specific contexts [24]. Second, ker-
nel development comes with strict safety and performance
requirements: bugs can lead to kernel panics, and even mi-
nor inefficiencies can degrade system-wide behavior. This
makes the design of the Checker and Evaluator critical.
To evaluate whether these challenges can be overcome, we
instantiate PolicySmith in the context of TCP congestion
control. This case study is not aimed as a search for new
instance-optimal algorithms, but as a focused case study to
test whether PolicySmith can navigate the constraints and
risks of kernel-space policy generation.

5.0.1 Template design. The Linux kernel requires conges-
tion control algorithms to implement five event-driven call-
backs that update the congestion window (cwnd) in response
to packet-level events. Following the Template design used
for caching (§4.1.2), we isolate decision logic from state
management, exposing only the decision making function
(cong_control) to the Generator. This function is provided
with a rich set of features, such as previous cwnd, minimum
RTT, inflight bytes, among others. To enable reasoning over
history, our Template also provides history arrays - time
series arrays that capture smoothed versions of these metrics
over the last 10 RTT intervals [66].

5.0.2 Template and Checker. We implement our Template
as a Linux kernel module. However, rather than compiling
LLM-generated code directly into the kernel, we offload the
generated logic to a dynamically attached eBPF probe that
is attached to the cong_control Linux kernel function. At
runtime, whenever this function is invoked, the probe is
triggered as well. The eBPF program executes the generated
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(a) CloudPhysics Traces (b) MSR Traces

Figure 2: Miss ratio improvements over FIFO for all traces in a dataset (higher is better,

triangles indicate mean, heuristics ordered left to right by increasing average). Top

five performing baselines shown in plot for brevity.

Dataset %age of traces

CloudPhysics A (48%) B (42%)
C (14%) D (31%)

MSR W (57%) X (64%)
Y (57%) Z (21%)

Table 2: Performance of discovered

heuristics: proportion of traces in the

dataset where synthesized heuristic

outperforms all baselines.

logic, computes the updated decision (i.e., cwnd), and writes
the result to a BPF map. This design ensures that all candi-
date programs pass the eBPF verifier [52] before execution -
which acts as the Checker in our framework. This pattern
– using a kernel module for scaffolding and template logic,
combined with an eBPF probe for executing generated code
and communicating via a BPF map – is a general mecha-
nism that can be applied to other kernel components such
as packet schedulers, I/O controllers, or memory managers.

5.0.3 Preliminary Results. We generated 100 candidate con-
gestion control heuristics and attempted to compile them
into eBPF programs. Only 63% of the candidates passed the
eBPF verifier on the first try, and an additional 19% success-
fully compiled after the Generator was provided with the
stderr. The most common causes of errors were the use of
floating-point arithmetic and missing checks for division by
zero. This compilation rate for kernel code is substantially
lower than what we observed for caching: where 92% of
candidates compiled in the first pass itself.

1 priority(now , obj_id , obj_info , counts , ages ,
sizes , history):

2 score = obj_info.count * 20;
3 age = now - obj_info.last_accessed;
4 score -= age /300;
5 score -= obj_info.size /500;
6 if (history.contains(obj_id)){
7 h = history.get_metadata(obj_id);
8 score += h->count *15;
9 score += h->age_at_eviction_time /150;
10 }
11 else score -=40;
12 recent = ages.percentile (0.75);
13 if (obj_info.last_accessed <recent) score -=30;
14 big = sizes.percentile (0.75);
15 if (obj_info.size > big) score -=25;
16 else score +=10;
17 frequent = counts.percentile (0.7);
18 score += (obj_info.count >frequent) ? 50:-5;
19 if (age < 1000) score +=25;
20 if (obj_info.count < 3) score -= 15;
21 return score;

Listing 1: A heuristic discovered by PolicySmith.

We evaluated the heuristics that compiled successfully
on a 12 Mbps, 20ms delay emulated link [42]. The result-
ing behaviors varied widely: bandwidth utilizations ranged
from 23% to 98%, and average queuing delays spanned from
2ms to 40ms. This variance illustrates the diversity of poli-
cies that can be explored using automated strategies like
PolicySmith.

6 Discussion

Per-Instance Specialization in Practice. Our thesis explicitly
abandons the pursuit of “universal” heuristics. Instead, we
target instance-optimality—generating code tailored to each
workload, hardware target, and objective function. This spe-
cialization raises new challenges: How do we reliably detect
when the instance has changed? Can we incrementally up-
date policies? What abstractions enable policy reuse across
similar contexts? These are tantalizing open questions, with
only a few having initial answers (e.g., guardrails [50]).
Per-Policy vs. End-to-End Coordination. Policy synthesis

today often targets individual components (e.g., a conges-
tion control algorithm or cache eviction strategy). But in
real systems, these policies interact—coordinating across the
network stack, storage hierarchy, and compute resources. A
key research direction is to extend synthesis to reason about
interactions between synthesized policies, or even synthesize
policies end-to-end across components to achieve global ob-
jectives. Can we express cross-cutting goals and constraints?
Can LLMs or other program synthesis tools understand and
generate such coordinated logic?
Evaluation Without Deployment. Offline policy synthesis

hinges on the ability to evaluate candidate policies without
full deployment. This raises questions about test harness
fidelity, simulation accuracy, and robustness to distribution
shift. For safety- or latency-critical systems, policy evaluation
must ensure that synthesized logic is not just performant, but
correct. Integrating synthesis with formal methods, fuzzing,
or worst-case scenario testing may help bridge this gap.

Trade-offs between Expressivity and Interpretability.Models
like transformers can capture complex feature interactions
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via attention, enabling behaviors beyond traditional human-
designed heuristics, which are often shallow and simplified.
LLM-generated code may offer a middle ground – more ex-
pressive than typical handwritten logic, yet still interpretable
and efficient. Moreover, LLMs can be tuned to produce sim-
pler code, preserving interpretability when needed.

Tools, Workflow, and Developer Experience. In this new par-
adigm, the “programmer” becomes a supervisor of synthesis,
not the author of logic. This shift requires a rethink of de-
veloper tools: how to prompt, debug, validate, and evolve
synthesized policies. Understanding how systems engineers
interact with these tools—and how to guide synthesis with
expert insight—is a key opportunity.

7 Related Work

Prior work, such as [38, 56, 57], have hinted at the lack of a
universal heuristic and that instance-optimal heuristics are
needed for various domains. While these efforts propose pro-
grammable interfaces, they still rely on developers to craft
optimal policies. In contrast, PolicySmith automatically dis-
covers effective heuristics given such an interface.
Other approaches use solvers [3, 21] or program

search [35] to generate code, but require detailed system
models. PolicySmith avoids these challenges by using high-
level specifications, relying on Generator and Evaluator
to search without needing a formal model.
There is a substantial body of recent work on coding

agents that combine LLM queries and evolutionary search.
For example, FunSearch [49] uses such an approach for au-
tomated discovery of mathematically interesting artifacts;
LaSR [23] and LLMSR [55] use the approach for scientific dis-
covery; EvoPrompting uses it for neural architecture search;
and AlphaEvolve [43] uses it for a range of tasks from math-
ematical discovery to the synthesis of scheduling heuristics.
Our proposed approach is the first to generalize these meth-
ods into a unified approach to system policies.

In the context of systems policies, prior work has explored
the use of LLMs to automate specific pieces of policy de-
sign: such as feature engineering [26], explaining heuristic
behavior [34, 45], or synthesizing router configurations [39].
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