
FreeFlow: Software-based Virtual RDMA Networking for Containerized Clouds

Daehyeok Kim1, Tianlong Yu1, Hongqiang Harry Liu3, Yibo Zhu2, Jitu Padhye2

Shachar Raindel2, Chuanxiong Guo4, Vyas Sekar1, Srinivasan Seshan1

1Carnegie Mellon University, 2Microsoft, 3Alibaba, 4Bytedance

Abstract

Many popular large-scale cloud applications are increas-
ingly using containerization for high resource efficiency and
lightweight isolation. In parallel, many data-intensive appli-
cations (e.g., data analytics and deep learning frameworks)
are adopting or looking to adopt RDMA for high network-
ing performance. Industry trends suggest that these two ap-
proaches are on an inevitable collision course. In this paper,
we present FreeFlow, a software-based RDMA virtualiza-
tion framework designed for containerized clouds. FreeFlow
realizes virtual RDMA networking purely with a software-
based approach using commodity RDMA NICs. Unlike ex-
isting RDMA virtualization solutions, FreeFlow fully sat-
isfies the requirements from cloud environments, such as
isolation for multi-tenancy, portability for container migra-
tions, and controllability for control and data plane policies.
FreeFlow is also transparent to applications and provides
networking performance close to bare-metal RDMA with
low CPU overhead. In our evaluations with TensorFlow and
Spark, FreeFlow provides almost the same application per-
formance as bare-metal RDMA.

1 Introduction
Developers of large-scale cloud applications constantly seek
better performance, lower management cost, and higher re-
source efficiency. This has lead to growing adoption of two
technologies, namely, Containerization and Remote Direct
Memory Access (RDMA) networking.

Containers [7, 11, 6] offer lightweight isolation and porta-
bility, which lowers the complexity (and hence cost) of de-
ploying and managing cloud applications. Thus, containers
are now the de facto way of managing and deploying large
cloud applications.

RDMA networking offers significantly higher throughput,
lower latency and lower CPU utilization than the standard
TCP/IP based networking. Thus, many data-intensive appli-
cations, e.g., deep learning and data analytics frameworks,
are adopting RDMA [24, 5, 18, 17].

Unfortunately, the two trends are fundamentally at odds
with each other in clouds. The core value of containerization
is to provide an efficient and flexible management to applica-
tions. For this purpose, containerized clouds need containers
to have three properties in networking:
• Isolation. Each container should have its dedicated net-

work namespace (including port space, routing table, in-
terfaces, etc.) to eliminate conflicts with other containers
on the same host machine.
• Portability. A container should use virtual networks to

communicate with other containers, and its virtual IP
sticks with it regardless which host machine it is placed
in or migrated to.
• Controllability. Orchestrators can easily enforce control

plane policies (e.g., admission control, routing) and data
plane policies (e.g., QoS, metering). This property is par-
ticularly required in (multi-tenant) cloud environments.

These properties are necessary for clouds to freely place and
migrate containers and control the resources each container
can use. To this end, in TCP/IP-based operations, network-
ing is fully virtualized via a software (virtual) switch [15].

However, it is hard to fully virtualize RDMA-based net-
working. RDMA achieves high networking performance by
offloading network processing to hardware NICs, bypassing
kernel software stacks. It is difficult to modify the control
plane states (e.g., routes) in hardware in shared cloud envi-
ronments, while it is also hard to control the data path since
traffic directly goes between RAM and NIC via PCIe bus.

As a result, several data-intensive applications (e.g., Ten-
sorFlow [24], CNTK [5], Spark [18], Hadoop [17]) that
have adopted both these technologies, use RDMA only when
running in dedicated bare-metal clusters; when they run in
shared clouds, they have to fundamentally eschew the per-
formance benefits afforded by RDMA. Naturally, using ded-
icated clusters to run an application is, however, not cost ef-
ficient both for providers or for customers.

Thus, our goal in this paper is simple: we want cloud-
based, containerized applications to be able to use RDMA as

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 113

Property Native SR-IOV [21] HyV [39] SoftRoCE [36]

Isolation 7 X X X
Portability 7 7 X X
Controllability 7 7 7 X
Performance X X X 7

Table 1: RDMA networking solutions that can be potentially used
for containers.
efficiently as they would in a dedicated bare-metal cluster;
while at the same time achieving the isolation, portability
and controllability requirements in containerized clouds. 1

Currently, there is no mature RDMA virtualization solu-
tions for containers.2 Table 1 summarizes some important
options that can potentially be extended to support contain-
ers, although they fail to achieve the key requirements or
have to do so at a substantial performance cost.

For instance, hardware-based I/O virtualization tech-
niques like SR-IOV [21] have fundamental portability lim-
itations [39, 28], since they require reconfiguration of hard-
ware NICs and switches to support migrations of contain-
ers. Control path virtualization solutions, such as HyV [39],
only manipulate the control plane commands for isolation
and portability, and they do not have the visibility or con-
trol of the data traffic. Because of this, they cannot flexi-
bly support data plane policies needed by cloud providers.
Software-emulated RDMA, e.g., SoftRoCE [36], can easily
achieve isolation, portability, and controllability by running
RDMA on top of the UDP networking stack and use existing
virtual IP networking solutions, but its performance will be
limited by UDP.

In this paper, we present FreeFlow, a software-based vir-
tual RDMA networking framework for containerized clouds,
which simultaneously achieves isolation, portability and
controllability and offers performance close to bare-metal
RDMA. At the heart of FreeFlow is a software virtual switch
running on each server to virtualize RDMA on commodity
RDMA NICs. FreeFlow does not require any specialized
hardware or hardware-based I/O virtualization. The software
virtual switch has the full access to both control path (e.g.,
address, routing) and data path (e.g., data traffic) of the com-
munications among containers. This design philosophy is
similar to existing software virtual switches used for TCP/IP
networking in the containerized cloud, e.g., Open vSwitch
(OvS) [15] although FreeFlow’s actual design is dramati-
cally different from OvS due to RDMA’s characteristics.

The design of FreeFlow addresses two key challenges.
First, we want FreeFlow to be completely transparent to the
application. This is challenging because RDMA requires
a NIC to manipulate memory buffers and file descriptors,
while applications inside containers do not directly inter-

1Indeed, our primary motivation to start this work is to enable a large-
scale AI application at a leading cloud provider to be migrated from a dedi-
cated cluster to clouds, and yet continue to use RDMA.

2 There are some recent proposals from industry [35, 26] but these have
limitations as we discuss in §9.

act with the NIC due to network virtualization. Our key
insight to address this challenge is that containers are es-
sentially processes, and they can easily share resources like
memory and file descriptors with FreeFlow . If FreeFlow and
a container share the same memory (§4.3) and file descrip-
tor (§4.4), any operations on the underlying physical RDMA
NIC will automatically take effect inside the container. A
further problem is that sharing resources transparently to ap-
plications is not straightforward, given that applications do
not cooperatively create resources that are shareable. We
design methods to convert resource from non-shareable to
shareable with no or minimal modifications on application
code.

Second, FreeFlow must offer throughput and latency that
is comparable to bare-metal RDMA. We identify the per-
formance bottlenecks in throughput and latency as mem-
ory copy and inter-process communication respectively. We
leverage a zero-copy design for throughput (§4.3), and a
shared memory inter-process channel with CPU spinning for
latency (§5.2). We also optimize FreeFlow for bounding
CPU overhead.

We evaluate the performance of FreeFlow with standard
microbenchmarking tools and real-world data-intensive ap-
plications, Spark and TensorFlow without any or with min-
imal modification on them. FreeFlow achieves the per-
formance comparable to bare-metal RDMA without much
CPU overhead. We also show that FreeFlow significantly
boosts the performance of real-world applications by up to
14.6 times more in throughput and about 98% lower in la-
tency over using conventional TCP/IP virtual networking.
FreeFlow has drawn interests from multiple RDMA solution
providers, and is open sourced at https://github.com/
Microsoft/Freeflow.

2 Background
This section provides a brief background on container and
RDMA networking, to motivate the need for software-based
RDMA virtualization for containers.
Containers and container networking: Containers are be-
coming the de facto choice [30, 27, 25] to package and de-
ploy data center applications. A container bundles an ap-
plication’s executables and dependencies in an independent
namespace using mechanisms such as chroot [4]; thereby of-
fering a lightweight isolation and portability solution.

Most containerized applications use microservices archi-
tecture, and are composed of multiple containers. For exam-
ple, each mapper and reducer node in Spark [2] is an indi-
vidual container; each parameter server node or worker node
in TensorFlow [22] is also an individual container. The con-
tainers exchange data via a networking solution. The design
of the networking solution affects the degree of isolation and
portability.

For instance, in the host mode networking, containers use
their host’s IP and port space, and communicate like an or-
dinary process in the host OS. This mode has poor isolation

114 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

#Machines / #GPUs Transport layer Normalized speed

1 / 8 - 1.00×
2 / 16 TCP/IP (host) 0.45×
2 / 16 RDMA (host) 1.38×

Table 2: Speeds of a RNN job over TensorFlow on a single machine
and multiple machines with TCP and RDMA networking. Speeds
are normalized to the single machine case.

(e.g., port conflicts) and portability (e.g., must change IP ad-
dresses and ports after migrating to another host).

Thus, many applications use virtual mode networking. In
this mode, the network namespaces of containers are fully
isolated, and containers communicate via a virtual (overlay)
network composed of software virtual switches on host ma-
chines. The virtual IPs of the containers are highly portable,
given that the routes to the virtual IPs can be controlled in
the software virtual switches. Since all data traffic must go
through the virtual switches, they have access to the traffic,
which provides the full controllability to the container net-
works. Such isolation and portability give orchestrators full
flexibility in container placement and migrations, and such
controllability offers cloud providers the power to enforce
their policies on both control and data plane.

Indeed, orchestrators like Kubernetes [11] mandate the
use of virtual networking mode [12]. A number of software
solutions are available to provide virtual networking fabrics
for containers, such as Weave [23], and Docker Overlay [7].
RDMA networking: Many modern applications (e.g.,
deep learning and data analytics frameworks) have adopted
RDMA networking [18, 17, 22, 5] to get higher throughput,
and lower latency than the traditional TCP/IP stack. RDMA
offers these gains by offloading most of the networking func-
tionality to the NIC, effectively bypassing the OS kernel.

Table 2 shows measured performance improvements of
using RDMA for a deep learning application – training a Re-
current Neural Network (RNN) speech recognition model.
The application was first benchmarked on a single machine
with 8 GPUs. When the application run on two machines
with 16 GPUs, traditional TCP/IP networking becomes a
bottleneck, and the performance degrades. With RDMA,
however, the extra GPUs offer performance gains.

The reason is that this RNN training task consists of thou-
sands of steps. In each step, all GPUs must shuffle the train-
ing model parameters, and the total traffic volume ranges
from 100 MB to 10 GB. The time spent on communication is
essentially wasting GPU’s time, since GPUs are idle during
shuffling. TCP performs badly in these frequent and bursty
workloads, while RDMA can instantaneously climb to full
bandwidth at the beginning of each shuffle.
Need for software-based RDMA virtualization: We have
noted the benefits of virtual mode networking for container-
ized applications – namely, enhanced isolation, portability,
and controllability. We have also noted that RDMA can of-

C1 C2

L2 Switch

VF2VF1

C3

L2 Switch

VF3

H
o

st
1

H
o

st
2

Physical
Switch

C1 C2 C3

H
o

st
1

H
o

st
2

Physical
Switch

Dst: C1

Dst: C2
Dst: C3 Dst: Host1 Dst: Host2

N
IC

N
IC

N
IC

N
IC

Software
Switch

(a) SR-IOV based virtual network relies
on physical switch to route packets
towards virtual IPs.

(b) Software-based virtual network is
independent with the underlying physical
network.

Software
Switch

Figure 1: Comparison between hardware-based (SR-IOV) and
software-based virtual networking solutions.

fer significant performance boost to many applications that
have a microservice architecture.

The question then is, how do we use RDMA networking
with containerized applications that require virtual mode net-
working, especially in a cloud environment.

RDMA networking, as we saw earlier, relies on offload-
ing most of the networking functionality to a NIC. One pos-
sible approach to “virtualize” RDMA networking is to use
hardware-based solutions such as SR-IOV [21]. However,
this would limit the portability offered by the virtual mode
networking. As an example shown in Figure 1(a), with SR-
IOV, the NIC runs a simple layer-2 switch that merely per-
forms VLAN forwarding. Hence, all packets generated from
and destined to a virtual network have to be directly routed
in the underlying physical network. Thus, migrating con-
tainer C1 to Host2 requires reconfiguring the physical switch
to route C1’s packets to Host2 rather than Host1. Also, in
production, physical switches need to maintain a huge size
of routing table to manage routes for all containers in vir-
tual networks, which can be infeasible in a large-scale cloud
environment.

Thus, we believe that the right approach to virtualizing
RDMA network for containers is to use a software switch
– just like it is done for virtualizing traditional TCP/IP net-
working. As shown in Figure 1(b), the physical network is
only in charge of delivering packets targeting on different
hosts, and virtual networking routing is completely realized
in software switches inside each host, which is independent
with the physical network. The software switch can control
all addressing and routing, thereby providing good isolation
and portability for control plane. It can also be used to im-
plement network functions on data plane such as QoS and
metering.

3 Overview
The goal of FreeFlow is to provide an virtual interface in-
side each container, and applications can use RDMA via a
virtual network on top of the virtual interface in an unmod-
ified way. Ideally, the performance of the virtual network
should be close to bare-metal RDMA, and policies on both
control and data path are flexible to be configured purely in
software. In this section, we present the system architecture
and key challenges in the design of FreeFlow .

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 115

FreeFlow
Router

Read/Write
by NIC

Application

PhyNIC

Data Buffer
Packet

Processor

Shadow
MemoryCommands

Commands

PhyNIC

Data Buffer
Packet

Processor

Memory region
Application

Container

Read/Write
by NIC

(b) FreeFlow as a RDMA Relay

Memory region
Container

vNIC

(a) Host RDMA

Figure 2: Design overview: FreeFlow router directly accesses
NIC(s) and serves as a RDMA relay for containers. Blue and red
lines are control and data path, respectively.

IB Verbs API

Applications

MPI rsocket iSER SDP

Infiniband RoCE iWarp

Socket

Figure 3: IB Verbs is the de facto “narrow waist” of various
RDMA-based network offloading solutions.

3.1 Overall Design
In native RDMA, as shown in Figure 2(a), applications lever-
age RDMA APIs to directly send commands to the hardware
NICs for both control and data path functions. FreeFlow in-
tercepts the communication between applications and physi-
cal NICs, and performs control plane and data plane policies
inside the software FreeFlow router which runs as another
container on the host machine. In particular, for controlling
the data path, FreeFlow router only allows the physical NIC
to directly read and write from its own memory (the shadow
memory in Figure 2(b)) and take the charge of copying data
from and to the applications’ memory. Note that the mem-
ory inside container and the shadow memory in the FreeFlow
router can be the same piece of physical memory for zero-
copy (§4.3).

3.2 Verbs: the “narrow waist” for RDMA
There are multiple ways to intercept the communications be-
tween applications and physical NICs, but we must choose
an efficient one. A number of commercial technologies sup-
porting RDMA are available today, including Infiniband [9],
RoCE [8] and iWarp [19]. Applications may also use several
different high-level APIs to access RDMA features, such as
MPI and rsocket [20]. As shown in Figure 3, the de facto
“narrow waist” of these APIs is the IB Verbs API (Verbs).
Thus, we consciously choose to support Verbs in FreeFlow
and by doing so we can naturally support all higher-level
APIs.

Verbs uses a concept of “queue pairs” (QP) for data trans-
fer. For every connection, each of two endpoints has a send
queue (SQ) and a receive queue (RQ), together called QP.
The send queue holds information about memory buffers to
be sent, while the receive queue holds information about
which buffers to receive the incoming data. Each endpoint

Container1
IP: 1.1.1.1

Host1

RDMA Network

vNIC

NetAPI

Application

FreeFlow NetLib

Container2
IP: 2.2.2.2

vNIC

NetAPI

Application

FreeFlow NetLib

Container3
IP: 3.3.3.3

Host2

vNIC

NetAPI

IPC
Channel

FreeFlow
Router

F
re

e
F

lo
w

 O
rc

h
e

st
ra

to
r

Application

PhyNICPhyNIC

Shared Memory
for Container1

Shared Memory
for Container2

Policies & Stats

Shared Memory
for Container3

FreeFlow NetLib

Figure 4: FreeFlow architecture.

also has a separate completion queue (CQ) that is used by
the NIC to notify the endpoint about completion of send or
receive requests. The Verbs library and associated drivers al-
low applications to read, write and monitor the three queues.
Actual transfer of the data, including packetization and error
recovery, is handled by the NIC.

To transparently support Verbs, FreeFlow creates virtual
QPs and CQs in virtual NICs and relates the operations on
them with operations on real QPs and CQs in the physical
NICs.

3.3 FreeFlow Architecture
The architecture of FreeFlow is shown in Figure 4. The three
components of container networking stack that we modify
or introduce are shown in gray: (i) the FreeFlow network
library (FFL), (ii) the FreeFlow software router (FFR), and
(iii) the FreeFlow network orchestrator (FFO).

FFL , located inside the container, is the key to making
FreeFlow transparent to applications. From application’s
perspective, it is indistinguishable from the standard RDMA
Verbs library [16]. All applications and middleware built
atop the Verbs API can run with no (or negligible) modifi-
cation. FFL coordinates with FFR .

FFR runs a single instance on each host and works with
all containers on the same host to provide virtual networking.
In the data plane, FFR shares memory buffers with contain-
ers on the same host and isolates the shared memory buffers
for different containers. FFR sends and receives data in the
shared memory through the NIC, relying on FFL to sync
data between application’s private data buffers and the shared
memory buffers. FFR implements the data-plane resource
policies, e.g., QoS, by controlling the shared-memory chan-
nel between containers and FFR . It also works with FFO to
handle bookkeeping tasks such as IP address assignment.

FFO makes control-plane decisions for all containers in
its cluster based on user-defined configurations and real-time
monitoring of the cluster. It also maintains centralized mem-
ory maps, as we shall discuss in §4.3.

3.4 Challenges
In designing FreeFlow, we need to address two key chal-
lenges. First, FreeFlow should provide an RDMA interface

116 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

which transparently supports all types of existing RDMA
operations. There are various types of RDMA operations in-
cluding one- and two-sided operations for data transfer, poll-
and event-based mechanisms for work completion notifica-
tion, and TCP/IP and RDMA-CM for the connection estab-
lishment. We observe that it is not straightforward to support
them transparently due to the complexity of RDMA oper-
ations. Second, FreeFlow should provide near bare-metal
RDMA performance while minimizing CPU and memory
overhead. Since FFR intercepts the Verbs calls from appli-
cations via FFL , we need to carefully design the communi-
cation channel between FFR and FFL .

We will present our approach for each challenge in §4 and
§5, respectively.
4 Transparent Support for RDMA Opera-

tions
Verbs supports multiple types of operations and mechanisms.
With one-sided operations such as WRITE and READ, a
writer (reader) can write (read) data to (from) a specific
memory address in the remote side, without the latter aware
of this operation. With two-sided operations such as SEND
and RECV, the receiver must first get ready to receive before
a sender sends out the data. Also, applications can use either
poll-based or event-based mechanisms to get work comple-
tion notifications. Different applications use different oper-
ation types as their needs, and we see all of them used in
popular applications [32, 18, 17, 22].

FreeFlow completely and transparently supports such dif-
ferent types of RDMA operations. The primary challenge is
to support one-sided operations and event-based completion
notifications, in which RDMA NIC can modify memory or
file descriptors in FFR silently. FFR cannot know about the
modifications immediately unless it keeps busily polling the
status of the memory or file descriptor, so that it is hard to
convert the operations from physical NICs to virtual NICs
inside containers as soon as possible. We solve this chal-
lenge taking advantage of the fact that containers are essen-
tially processes, so that FFL and FFR can share memory and
file descriptors, and physical NIC’s modifications can auto-
matically be passed into containers. Sharing memory be-
tween FFL and FFR is also not straightforward for applica-
tion transparency, because applications inside containers do
not allocate memory in IPC shared memory space, and we
need to convert the memory to shared memory transparently.
4.1 Connection Establishment
Two RDMA communication endpoints need to first establish
a connection. They create a QP in each one’s NIC, register-
ing a buffer of memory to the QP and pairing local QP with
remote QP. After a connection is established, the application
can ask the NIC to send the content in the registered memory
to the remote end or put received data into the local buffer.

Steps 1–7 in Figure 5 show the typical process of connec-
tion establishment using Verbs. The left column shows the
sequence of Verbs calls made by the application. The two

Unmodified App

Get local information.
ibv_get_device_list(...)
ibv_open_device(...)

Create local QP/CQ
ibv_create_qp(...)/
ibv_create_cq(...)

Poll completion event
from CQ

ibv_poll_cq(...)

Pair with remote QP with
the remote GID and keys

ibv_modify_qp(...)

Send content in mem out
ibv_post_send(...)

Register a memory buffer
(mem) to local QP
ibv_reg_mr(...)

Get local QP ready for
sending

ibv_modify_qp()

Exchange metadata (GID,
QP ID, memory keys) for
connection with receiver

1

2

3

4

5

6

7

8

FFL FFR

Create QP CQ in PhyNIC
and return the ID and
meta-data of QP CQ

Create shared memory (s-
mem), register s-mem to

PhyNIC and return s-
mem s name and keys

Pair with remote QP in
remote FFR with the GID

and keys input by app

Get QP in the phyNIC
ready for sending

Send the content in
s-mem out

Poll completion event
from CQ in PhyNIC

Poll completion
event from FFR and

return to
application

Remember the
tuple (QP, mem,

s-mem, keys)

Steps

Return the
meta-data of the
container s vNIC

Obtain the routable
address, GID of the QP

ibv_query_gid(...)

Return the GID of the QP
in the PhyNIC back

This step is transparent to FreeFlow

9

E
st

a
b

li
sh

in
g

C
o

n
n

ec
ti

o
n

FreeFlow

Figure 5: The workflow of a RDMA SEND operation.

columns in the blue/shaded area shows how FreeFlow traps
the Verbs calls from the application, and to establish a con-
nection between the sender’s FFR and the receiver’s FFR .

Step 1: The application queries for the list of NICs whose
drivers support Verbs. FFL intercepts the call and returns the
context data object of the virtual NIC of the container.

Step 2: The application creates a QP and a CQ on its virtual
NIC, while FFR creates the corresponding queues (QP′ and
CQ′) on the physical NIC. The QP-IDs and other metadata
information of the queues will be forwarded to the applica-
tion by FFL after FFR finishes the creations of the queues.

Step 3: The application registers a block of memory (mem)
to the QP. FFR allocates a corresponding block memory
(s-mem) in its shared memory inter-process communication
(IPC) space with the same size as mem, registers s-mem to
QP′. FFR returns the ID (a host-wide unique name of the
IPC memory) it used to create s-mem. With this ID, FFL can
map s-mem into its own virtual memory space.

Step 4: The application queries the address (so-called GID
in RDMA) of the local QP. This address information will be
shared with the other side for pairing the local QP and remote
QP together. At the end of this step, FFR returns the actual
GID of QP′.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 117

Step 5: The application exchanges GID and QP-ID with the
remote end. Applications can exchange this information via
any channels such as TCP/IP or RDMA-CM.3

Step 6: The application pairs its local QP with the remote
container’s QP using the receiver’s GID. FFL forwards this
GID to FFR . FFR pairs QP′ with this GID.
Step 7: The application modifies the state of local QP to
Ready to Send/Receive state, while FFR modifies the state
of QP′ accordingly.

After Step 7, from the application’s point of view, it is
ready to send or receive data – it has created a QP and a CQ,
registered mem to the QP, paired with the remote QP and
established a connection with the remote QP.

From FreeFlow’s point of view, it has created QP′ and CQ′

which are associated with the QP and CQ in the application,
registered s-mem as the shadow memory of mem, and paired
with the QP′ in the remote FFR . It is also ready to get and
forward Verbs calls from the application.

FreeFlow may increase the latency for connection estab-
lishment due to the additional interactions between FFR and
FFL . However, it does not much affect the overall latency
of FreeFlow since it is a one-time cost; many RDMA appli-
cations re-use pre-established connections for communica-
tions.

4.2 Two-sided Operations
Each sender or receiver needs to go through two steps to per-
form a data transfer. The first step is to use QP to start send-
ing or receiving data, and the second step is to use CQ to get
completion notifications. Steps 8–9 in Figure 5 shows this
process.
Step 8: The application invokes the SEND call, and sup-
plies pointer to mem. FFL first copies data from mem to
s-mem, and FFR then invokes its own SEND call to send s-
mem to the remote FFR . We avoid the memory copies from
mem and s-mem by applying our zero-copying mechanism
described in §4.3. Note that the remote router would have
posted a corresponding RECV call by this time.
Step 9: The application either polls the CQ or waits for a
notification that indicates the completion of the send. FFR
also polls/waits-on CQ′ associated with QP′ and forwards it
to FFL .

For subsequent SEND operations on the same QP, the ap-
plication only needs to invoke Step 8 and 9 repeatedly. The
workflow of a RECV operation is similar, except that at Step
9, FFL will copy data from s-mem to mem after the QP′ fin-
ishes receiving data, which is the opposite of Step 8 in SEND
operation.

The presence of FFL and FFR is completely transparent
to the application. To the application, it appears that it is per-
forming normal verbs operations on its vNIC. The steps in
Figure 5 are standard way of writing Verbs programs. The

3FreeFlow also has an extension to support RDMA-CM with similar a
design to support IB Verbs, while we omit the details due to space limit.

FreeFlow behavior illustrated here is sufficient to fully sup-
port SEND and RECV operations.

4.3 One-sided Operations
In one-sided operations, a client needs not only the GID of a
server, but also the address of the remote memory buffer, and
the security key for accessing the memory. This information
is exchanged in Step 5 in Figure 5 and becomes available to
FreeFlow in Step 8 (where WRITE or READ can be called).

Compared to two-sided operations, it is more challenging
to transparently support one-sided operations. There are two
problems to support one-sided operations in FreeFlow .

First, the target memory address mem is in the virtual
memory of the remote container. However, the local FFR
does not know the corresponding s-mem on the other side.
For example, in Figure 6(a), when the sender tries to write
data in mem-1 to remote memory mem-2, it fails at stage 3)
because the target memory address mem-2 is not accessible
for FFR on the receiver side.

To solve this problem, FreeFlow builds a central key-value
store in FFO for all FFRs to learn the mapping between
mem’s pointer in application’s virtual memory space and
the corresponding s-mem’s pointer in FFR ’s virtual mem-
ory space. Updating this table adds latency to Step 3 in
Figure 5, when applications register memory to their virtual
NIC. However, data plane performance is not impacted be-
cause FFR can cache the mappings locally.

Second, even if we know the memory mapping on the re-
mote side, WRITE and READ can remotely modify or copy
data without notifying the remote side’s CPU, so that FFR
does not know when to copy to or from application’s mem-
ory. For instance, in Figure 6(b), the sender finds the correct
address of s-mem-2 and send the data to it. However, after
the data is available in s-mem-2, there is no notification for
the FFR in the receiver side to know when to copy s-mem-2
to mem-2. One way to solve this is to continuously synchro-
nize s-mem-2 and mem-2. This would consume a lot of CPU
and memory bus bandwidth.

To address this, in FreeFlow, we design a zero-copy based
mechanism to efficiently support one-side operations. The
high-level idea is to make mem and s-mem the same physi-
cal memory, so that FFR does not need to do any copy, and
the data will be naturally presented to the application. Fig-
ure 6(c) illustrates this design. By getting rid of memory
copies, we can also improve FreeFlow performance.

The key here is to make applications directly allocate and
use shared memory with FFR for data transfers. For this,
FreeFlow provides two options:
Option 1—Allocating shared buffers with new APIs: We
create two new Verbs functions, ibv malloc and ibv free,
to let applications delegate the memory creation and dele-
tion to FreeFlow. This allows FFL to directly allocate these
buffers in the shared memory region (shared with FFR), and
thus avoid the copy. The drawback of this option is the need

118 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

PhyNIC-1

mem-1

s-mem-1 s-mem-2

Sender Receiver

PhyNIC-2

FFR

1) send mem-1
to mem-2

mem-2

FFL2) copy mem-1
to s-mem-1

3) copy s-mem-1
to mem-2 (failed)

(a) Write Failure due to incorrect
destination memory address

PhyNIC-1

mem-1

s-mem-1 s-mem-2

PhyNIC-2

FFR

mem-2

FFL

(b) Inefficient Write due to unnotified
memory update

1) send mem-1
to mem-2

2) copy mem-1
to s-mem-1

3) copy s-mem-1
to s-mem-2

4)copy to
s-mem-2

(5) when to
copy?

PhyNIC-1 PhyNIC-2

FFR

FFL

(c) Correct and efficient Write with
Zero-Copy design

1)send mem-1
to mem-2

2)copy mem-1'
to mem-2'

3)copy to
mem-2'

mem-1 mem-2

Sender Receiver Sender Receiver

Figure 6: Zero-copy design enables FreeFlow to address the challenges to support one-sided operations efficiently.

// From <infiniband/verbs.h>
int ibv_post_send(struct ibv_qp *qp, struct ibv_send_wr *wr,
 struct ibv_send_wr **bad_wr);
struct ibv_qp {

struct ibv_context *context;
void *qp_context;
struct ibv_pd *pd;
struct ibv_cq *send_cq;
struct ibv_cq *recv_cq;
struct ibv_srq *srq;
uint32_t handle;
uint32_t qp_num;
...

};

IB Verbs
API Functions

IB Verbs
Data Objects

NIC Driver Communicator

NIC
File Descriptor

NIC Driver

Application

IB Verbs
API Functions

IB Verbs
Data Objects

Unix Socket
File Descriptor

FFR

Application

(a) A typical function and data
structure definition in IB Verbs

(b) The structure of Verbs Library
(c) FreeFlow “hijacks” the communication

between Verbs and NIC driver

IB Verbs
Library

FastPath

NIC Driver Communicator

Figure 7: The structure of Verbs API and library. FFR intercepts the calls between Verbs library and NIC drivers.

to modify application code, despite the modification should
be only several lines on the data buffer creation.
Option 2—Re-mapping applications’ virtual memory ad-
dress to shared memory: When an application registers a
private memory piece with virtual memory address va as a
data buffer (e.g., Step 3 in Figure 5), FFL releases the phys-
ical memory piece behind va and assign a shared physical
memory piece from FFR to va. In Linux, this operation is
only valid when va is an address at the start of a memory
page. To force the application to allocate memory always at
the start of a page, FFL intercepts the calls like malloc in
C language and makes it always return page aligned mem-
ory addresses. While this option can achieve zero memory
copy without modifying application code, it forces all mem-
ory allocations in the application to be page aligned, which
can result in lower memory efficiency on the host.

In practice, we recommend the first option since it is
cleaner and efficient. However, since many RDMA appli-
cations already make their data buffer page aligned for better
performance (e.g., RDMA-Spark [18]), we can directly use
the Option-2 without intercepting malloc, so the side-effect
is limited. Note that if a developer chooses to modify an
application using the option 1 or an application originally
supports page-aligned buffers, in either case, FreeFlow will
not incur any overhead in actual memory usage.

4.4 Event-based Operations
There are two options to get notified from CQs (Completion
Queue). The first option is to let application poll the CQs
periodically to check whether there are any completed oper-
ations. The second option is event-based, which means the

application creates an event channel and add CQs into the
channel. The channel contains a file descriptor which can
trigger events when operations are completed.

In FreeFlow , since the raw file descriptor is created from
physical NIC, FFR needs to pass the file descriptor to FFL ,
otherwise the latter cannot detect any events associated with
the file descriptor. We take advantage of the fact that FFL
and FFR are essentially two processes sharing the same OS
kernel, and leverage the same methodology to pass file de-
scriptors between processes [41] to pass event channels from
FFR to FFL .

5 Communication Channel between FFL and
FFR

Since FreeFlow intercepts every Verbs calls via FFL , trans-
lates, and forwards them to physical NICs via FFR , it is
crucial to have an efficient channel between FFL and FFR
that provides high RDMA performance while minimizing
system resource consumption. In this section, we present
two designs of such communication channels, which allows
trade RDMA performance for resource consumption and
vice versa depending on the requirements of applications.

5.1 Verbs Forwarding via File Descriptor
A straightforward way to pass Verbs calls between FFL and
FFR is to use RPC: FFL passes API name and parameters
to FFR , and FFR modifies the parameters properly, executes
the API and returns the result of the API call back to FFL .
Nevertheless, this simple RPC approach does not work well
in FreeFlow because of the complexity of input data struc-
tures of the Verbs calls. As shown in Figure 7(a), a typical
function call in Verbs, e.g., ibv post send, has inputs (qp,

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 119

wr) and outputs bad wr that are pointers to complex data
structures. Since FFL and FFR are in two different pro-
cesses, the pointers of FFL will be invalid in FFR .

One may advocate “deep copy” which traces down the
complex input/output data structures and transfer the data
objects under all pointers between FFL and FFR . However,
this approach has two severe drawbacks. First, data struc-
tures in Verbs are quite deep (i.e., multiple levels of pointers
and nesting) and such deep copies can hurt the performance.
Second, there are customized data structures that are defined
by user code whose deep copy methods cannot be predefined
by FreeFlow .

To address this issue, we take advantage of the structure
of the current Verbs library. As shown in Figure 7(b), the
Verbs library consists of three layers. The top layer is the
most complicated one and hard to be handled as described
above. However, when it comes down to the middle layer
that communicates with the NIC file descriptor, Verbs library
must prepare a simple enough (no pointers) data structure
that the NIC hardware can digest.

Therefore, instead of forwarding the original function
calls of Verbs, we forward the requests to be made for the
NIC file descriptor. We replace the NIC file descriptor in the
container with a Unix socket file descriptor whose the other
end is FFR , as shown in Figure 7(c). By doing this, FFR can
learn the command sent by the application and the supplied
parameters. FFR will map the operations to virtual queues in
the container to the same operations to the actual queues in
the physical NIC. It then converts the replies from the physi-
cal NIC to replies from the virtual NIC for the virtual queues,
and returns the new reply to FFL via the Unix socket. The
NIC driver communication layer in FFL will process the re-
ply normally without knowing about the operations behind
the Unix socket file descriptor.

While this Unix socket based approach consumes little
CPU, it can incur additional latency due to the inherent de-
lay from communicating via the socket. Our measurement
shows that the round trip time over Unix socket (and shared-
memory with semaphore) can easily be≥5 µs in a commod-
ity server. Because of this, the Unix socket communication
channel in Figure 7(c) can become a performance bottleneck
for latency sensitive applications that expects ultra low la-
tency (e.g., <5 µs).

For applications requiring low latency communication, we
will describe the design of Fastpath, which optimizes the
communication delay by trading CPU resources, in the next
section.

5.2 Fastpath between FFL and FFR
To accelerate the communication between FFR and FFL ,
we design a Fastpath in parallel with the Unix socket based
channel between them. As shown in Figure 8, FFL and FFR
co-own a dedicated piece of shared memory. With Fastpath,
FFR spins on a CPU core and keeps checking whether there
is a new request from FFL got written into the shared mem-

FFL

Shared
Memory

FFR

FFL

Shared
Memory

FFR

request

FFL

Shared
Memory

FFR

(1) idle (2) idle → request done
(3) request done →

response done

CPU spin response

Figure 8: Fastpath channel between FFR and FFL .

ory piece. Once a request is detected, FFR will immediately
executes it, while FFL starts to spin on a CPU core to check
whether the response is ready. After reading the response,
FFL will stop the CPU spinning on its side.

As we will see in § 8.1.2, Fastpath can significantly re-
duce the latency. However, the price is the CPU cycles spent
on spinning for reading requests and responses. To limit the
CPU overhead brought by Fastpath, we make two design de-
cisions: (1) FFR only spins on one CPU core for all Fast-
path channels with FFL on the same host; (2) Fastpath is
only used for functions which are on data path and are non-
blocking, so that the CPU spinning time on FFL to wait for a
response will be short (few microseconds). Overall, Fastpath
only consumes one CPU core per host on average to signifi-
cantly shorten the latency of message passing (§8.1.2). In ad-
dition, if FFO knows there is no latency sensitive application
on a host machine (according to running container images),
it can disable Fastpath and the CPU spinning.

6 Implementation
We implement FFL by modifying libibverbs (v1.2.1),
libmlx4 (v1.2.1) and librdmacm (v1.1.0).4 We add about
4000 lines of C code to implement FreeFlow’s logic. We
have implemented FFR from scratch in about 2000 lines of
C++ code. For FFO , we use ZooKeeper to store the user
defined information; e.g., IP assignment, access control, re-
source sharing policies, and memory mapping information
for one-sided operations. Due to space limits, we only show
three representative implementation details next.
Control & data plane policies: Since FreeFlow can con-
trol both control and data plane operations requested by con-
tainers, it can support common control and data plane poli-
cies including bandwidth enforcement, flow prioritization,
and resource usage enforcement.

As an example of control plane policy, in our prototype,
FreeFlow enforces a quota for the number of QPs each con-
tainer can create, since large number of QPs is a major reason
of the performance degradation of RDMA NICs [32]. This
control plane policy prevents a container from creating too
many QPs which can impact other containers on the same
host machine.

Also, as an example of data plane policy, FreeFlow en-
ables per-flow rate limiting with little overhead. We imple-

4libibverbs and librdmacm are libraries that allow userspace pro-
cesses to use InfiniBand/RDMA Verbs and RDMA communication manager
interfaces, respectively. libmlx4 is a userspace driver for libibverbs that
allows userspace processes to use Mellanox hardware.

120 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ment a simple token-bucket data structure in FFR . When an
application creates a new QP, we check the policies that are
stored in FFO , and associate a token-bucket with pre-set rate
limit to the QP. Upon every application’s send request, the
router checks whether the QP has enough tokens to send out
the requested message size. If so, the send request is for-
warded to the real NIC immediately. Otherwise, FFR will
notify FFL and delay it until there are enough tokens. Note
that it is only an example of implementing QoS policies.
FreeFlow provides flexible APIs for implementing sophis-
ticated QoS algorithms in FFR , while we omit the details
due to space limit.
Memory management in Fastpath: In Fastpath imple-
mentation, we use assembly codes to explicitly force the
cache lines of requests and responses written by FFL and
FFR to be flushed into main memory immediately. This is
necessary because otherwise, the CPU will keep the newly
written lines in cache for a while to wait more written lines,
slowing down the message exchanging speed on Fastpath.
Supporting parallelism: Since applications can create
multiple QPs and use multiple threads to transfer data in par-
allel, each Unix domain socket between the FFL and FFR
needs a lock. To improve performance, we create multiple
Unix domain sockets between the FFL and FFR . We avoid
“head of the line blocking” by dedicating more of these sock-
ets to data plane operations and event notifications and only
a few of sockets to creation, setups and delete operations.
On FFR , we use a dedicated thread for each incoming Unix
domain socket connection. We also create a dedicated data
structures for each container and a dedicated shared memory
region for each registered memory buffer to keep the data
path lock free.

7 Discussion
In this section, we discuss about some primary concerns and
potential extensions in the current design of FreeFlow.
CPU overhead: Similar to software-based TCP/IP vir-
tual networking solutions, FreeFlow incurs CPU overhead.
In particular, FreeFlow uses a CPU core for polling con-
trol messages between FFL and FFR to support low latency
IPC channel (§5.2). We admit that this is a cost for net-
work virtualization on top of current commodity hardwares.
One possible approach to address this is to utilize hardwares
that support offloading CPU tasks, such as FPGA, ARM co-
processor, or RDMA NICs [1]. We leave it as a future work
to eliminate the CPU overhead in Fastpath.
Security: One concern is that since FFR shares its memory
with containers, whether one container can read the commu-
nications of other containers on the same host by scanning
the IPC space. This is not a concern for FreeFlow because
FFR creates a dedicated shared memory buffer for each indi-
vidual QP. Only those shared memory buffers that belong to
a container will be mapped into the container’s virtual mem-
ory space. Another concern is the security of the memory
keys. If one can see the keys by wiretapping, subsequent

communications can be compromised. This problem is in-
herent in the way one-sided operations in raw RDMA work,
and is not made worse by FreeFlow .
Working with external legacy peers: Containers in
FreeFlow can naturally communicate with external RDMA
peers, since each FFR works independently. FFR does not
distinguish whether the remote peer is another FFR or an
external RDMA peer.
Container migration: FreeFlow supports offline migra-
tions naturally. If a container is captured, shutdown, moved
and rebooted in another host machine, its IP address is not
changed, so that its peers re-establish RDMA connections
with it as if it is just got rebooted. Nowadays, offline migra-
tions are commonly used in container clusters for resource
packing or fail-over. FreeFlow does not support live migra-
tion, since RDMA has poor mobility nowadays [39].
VM host: Our prototype (and evaluation) is based on con-
tainers running on bare-metal host machines. But FreeFlow
can be directly used on containers deployed inside VMs if
the VMs use SR-IOV to access the physical NIC.
Congestion control: RDMA NICs already have congestion
control mechanisms, and FreeFlow relies on them.
8 Evaluation
We evaluate the performance and overhead of FreeFlow. We
start from microbenchmarks (§8.1) and then the performance
of real-world applications on FreeFlow (§8.2).
8.1 Microbenchmarks
Setup: We run microbenchmarks on two testbeds.
One testbed runs InfiniBand, which is a traditional RDMA-
dedicated fabric. The servers are equipped with two In-
tel Xeon E5-2620 2.10GHz 8-core CPU, 64GB RAM, and
56Gbps Mellanox FDR CX3 NIC. The OS is Ubuntu 14.04
with the kernel version 3.13.0-129-generic.

The other testbed runs RoCE (RDMA over Converged
Ethernet). As the name indicates, RoCE only requires con-
ventional Ethernet switches (in our case, Arista 7050QX as
the ToR switch). The servers in this testbed cluster have Intel
Xeon E5-2609 2.40GHz 4-core CPU, 64GB RAM, 40Gbps
Mellanox CX3 NIC and Ubuntu 14.04 with the kernel ver-
sion 4.4.0-31-generic.

We run containers using Docker (v1.13.0) [7] and set up
a basic TCP/IP virtual network using Weave (v1.8.0) [23]
with Open vSwitch kernel module enabled. Unless other-
wise specified, we run Fastpath (§5.2) enabled FreeFlow.

We mainly compare FreeFlow with bare-metal RDMA,
which is a stand-in for the “optimal” performance. We will
show that FreeFlow enables virtual RDMA networking for
containers with minimal performance penalty. In §8.1.4, we
will also demonstrate the performance of translating TCP
socket calls into RDMA on top of FreeFlow, so that con-
ventional TCP applications can also benefit from FreeFlow.
There we also compare FreeFlow with bare-metal TCP and
Weave which supports virtual TCP/IP virtual networks for
containers.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 121

2K 8K 32K 128K 512K

Message size (B)

0

20

40

T
p

u
t

(G
b

p
s)

FreeFlow

Host-RDMA

(a) 56Gbps InfiniBand

2K 8K 32K 128K 512K

Message size (B)

0

20

40

T
p

u
t

(G
b

p
s)

FreeFlow

Host-RDMA

(b) 40Gbps RoCE

Figure 9: RDMA SEND throughput between a pair of contain-
ers on different hosts. FreeFlow enables container virtual networks
with minimal performance penalty.

8.1.1 Throughput and Latency
We focus on two basic performance metrics, throughput and
latency. We use the benchmark tools provided by Mel-
lanox perftest [13]: ib send lat and ib send bw to mea-
sure latency and throughput of two-sided operation (SEND),
ib write lat and ib write bw for one-sided operation
(WRITE). These tools can run on FreeFlow without any
modification, as explained in §4.3. In general, FreeFlow does
not differentiate the inter-host setting (sender and receiver
run on different hosts) and the intra-host setting. Here we
just show inter-host performance values.
Throughput: We measure the single thread RDMA
SEND/WRITE throughput on two testbeds, and show the
RDMA SEND results in Figure 9. Each run transmits 1GB
data with different sizes of messages ranging from 2KB to
1MB. FreeFlow RDMA WRITE results are in fact slightly
better than SEND, and omitted for brevity. We see that with
message size equal or larger than 8KB, FreeFlow gets full
throughput as bare-metal RDMA (46.9Gbps on InfiniBand
and 34.5Gbps on RoCE). In addition, when we increase the
number of concurrent container pairs (flows) to up to 512,
the aggregated throughput of all flows is still close to opti-
mal (Figure 11). We also verify that the bandwidth is fairly
distributed among different flows by calculating Jain’s fair-
ness index [31] (0.97 on average).

In general, the bandwidth-hungry applications tend to use
larger message sizes than a few KB. For example, in one of
our internal storage clusters that uses RDMA, typical mes-
sage sizes are 1MB or more. FreeFlow will have no through-
put penalty in this case (see §8.1.2 for CPU overhead).

Even when the message sizes are small, like 2KB,
FreeFlow still achieves more than half of the full through-
put. We verified that, in this case, the throughput is bounded
by the single FFR Fastpath thread (§5.2). This bottleneck
can be easily removed by assigning one more CPU core to
the FFR and balancing RDMA request loads across the two
cores. While we leave this option open, developers usually
do not expect to saturate the full bandwidth with small mes-
sages. Instead, for small messages, developers usually care
about latencies.
Latency: We measure the latency of sending a 64B, 256B,
1KB, and 4KB message, respectively. Like the throughput
benchmark, the two containers run on different hosts con-

64 256 1K 4K

Message size (B)

0

2

4

L
at

en
cy

(µ
s) FreeFlow Host-RDMA

(a) SEND on InfiniBand

64 256 1K 4K

Message size (B)

0

2

4

L
at

en
cy

(µ
s) FreeFlow Host-RDMA

(b) WRITE on InfiniBand
Figure 10: RDMA latency between a pair of containers on different
hosts. SEND is a typical two-sided operation, while WRITE is one-
sided.

1 2 4 8 16 32 64 12
8

25
6

51
2

Number of container pairs

0

50

T
p

u
t

(G
b

p
s)

FreeFlow

Host-RDMA

Figure 11: Aggregate through-
put when scaling up the number
of container pairs.

Host RDMA Fastpath LowCPU

1.8µs 2.4µs 17.0µs

Table 3: 2-byte message la-
tency of two FreeFlow modes.

nected via the same ToR switch. For each message size, we
measure the latency 1000 times. We plot the median, 10- and
99th-percentile latency values.

Figure 10 shows the one-way latency reported by the
perftest tools. We can see that one-sided WRITE op-
eration have lower latency than two-sided SEND opera-
tion, and also smaller gap between FreeFlow and bare-
metal RDMA. However, even with the two-sided operation,
FreeFlow causes less than 1.5 µs extra delay. The extra delay
is mainly due to the IPC between the FFL and FFR . One-
sided operation will trigger IPC only one time, while two-
sided operations will trigger two times and one time mem-
ory copy. This explains the larger latency gap of two-sided
operations.

To put these latency values into perspective, one hop in
network, i.e., a hardware switch, has 0.55µs latency [3].
Thus, FreeFlow latency overhead is comparable to an extra
switch hop in the network. In comparison, host TCP stack
latency is at least 10µs (§8.1.4) and then TCP/IP virtual net-
work latency is even larger (more than 40µs in our test). This
means FreeFlow preserves the latency advantage of RDMA
while enabling virtual network for containers.

8.1.2 CPU Overhead and Trade-off
FreeFlow achieves good performance with low CPU over-
head. FreeFlow has two modes: Fastpath and non-Fastpath
(or LowCPU, in §5.1). By default, Fastpath is enabled and
provides the best performance in terms of latency. In this
mode, FFR spins on one CPU core and serves Verbs requests
as soon as possible. One CPU core is capable of serving all
the containers on one host, thanks to the fact that FFR only
handles message-level events, instead of at packet-level like
in Open vSwitch. On a commodity server with many CPU
cores, this is acceptable.

In addition, users may choose the LowCPU mode, which
uses a Unix socket as the signal mechanism instead of core

122 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

FF
Fastpath

FF
LowCPU

Host
RDMA

0

0.5

1

C
P

U
co

re
s ib send bw

FFR

Figure 12: CPU usage of
ib send bw and FFR when
measuring the throughput with
1MB messages. 100% CPU
means one fully utilized CPU
core.

0 20 40

Bandwidth Cap (Gbps)

0

20

40

T
p

u
t

(G
b

p
s) FreeFlow

Ideal

Figure 13: FreeFlow can accu-
rately control the rate of traffic
flows from containers.

spinning. This hurts latency performance (increase from
2.4µs to 17.0µs), as shown in Table 3. In Figure 12,
we record the per-process CPU utilization when measur-
ing inter-host throughput. The throughput of all three cases
in the figure are the same (full bandwidth). It shows the
CPU benefit of LowCPU mode, especially on the FFR . In
LowCPU mode, FFR CPU overhead scales with the actual
load.

We recommend choosing the mode according to the work-
load requirement. Latency-sensitive or non-CPU heavy (e.g.,
GPU-heavy) applications should be run with Fastpath mode
while the rest can be run with LowCPU mode. However,
even with Fastpath, FFR consumes at most one CPU core,
and the extra overhead due to FFL is less than 30% for full
bandwidth throughput.

8.1.3 Rate Limiter and Performance Isolation
We demonstrate the performance of rate limiter mentioned
in §6. In Figure 13, we start a single flow between two con-
tainers on different hosts, on Infiniband testbed. We limit
the flow rate and set different bandwidth caps from 1Gbps
to 40Gbps. We see that the controlled bandwidth (y-axis)
is close to the bandwidth cap we set (x-axis). FreeFlow
achieves this with only 6% CPU overhead.

FreeFlow can isolate performance (i.e., throughput) for
different containers using the rate limiter. To demonstrate
this, we ran 10 concurrent flows between container pairs
and applied the different rate limits to each flows (from 1
to 10Gbps). We verified that the throughput of each flow is
accurately capped.

8.1.4 TCP Socket over RDMA
Enabling virtual RDMA can also benefit the performance of
socket-based applications. Below we show that FreeFlow
provides better performance than conventional TCP/IP vir-
tual networks with the help of rsocket, an existing socket-
to-Verbs translation layer.

We run the experiments on both InfiniBand and RoCE
clusters. By dynamically linking with rsocket during run-
time,5 application socket calls are transparently translated
into RDMA Verbs calls. We run iperf [10] for measuring

5This can be easily configured by setting an environment variable called
LD PRELOAD in Linux.

256 4K 64K 1M

Message size (B)

0

20

T
p

u
t

(G
b

p
s) FF+rsocket

Host-TCP

Weave

(a) iperf throughput on IB

256 4K 64K

Message size (B)

102

104

L
at

en
cy

(µ
s) FF+rsocket

Host-TCP

Weave

(b) NPtcp latency on IB
Figure 14: TCP throughput and latency between a pair of contain-
ers on different hosts. We compare native TCP with FreeFlow +
rsocket (socket-to-Verbs translation).

TCP throughput, and NPtcp [14] for TCP latency without
any modifications on these tools. We compare against the
same tools running on the virtual and host mode network.

As Figure 14 shows, FreeFlow always outperforms
Weave. Especially for small message latency, FreeFlow is
consistently lower than even host TCP/IP, by up to 98%. For
throughput, FreeFlow is sometimes worse than host TCP and
cannot achieve full throughput like raw RDMA, due to the
overhead of socket-to-Verbs translation. However, it is still
6.8 to 13.4 times larger than Weave with large messages.

The are two reasons for FreeFlow’s good performance.
First, the RDMA stack and FreeFlow architecture works
only in the userspace and avoids the context switching in ker-
nel TCP stack. This advantage is not unique; customized
userspace network stacks can also achieve this. The sec-
ond reason FreeFlow outperforms Weave is fundamental.
The existing TCP/IP virtual networking solutions perform
packet-by-packet address translation from virtual network to
host network. However, FreeFlow performs message-based
translation from virtual connection to physical connection.
Thus, FreeFlow always outperforms Weave, though rsocket
introduces some socket-to-Verbs translation overhead.

8.2 Real-world Applications
In this section, we show the performance of TensorFlow and
Spark, a representative machine learning and data analytics
framework, running in containers. We compare the applica-
tion performance on FreeFlow against Host-RDMA, Host-
TCP, and Weave.

Since TensorFlow requires GPUs that our RoCE cluster
does not have, we run all the experiments on our InfiniBand
cluster. Based on the microbenchmarks, we believe RoCE
clusters will have similar trends if equipped with GPU.

8.2.1 Tensorflow
We run RDMA-enabled Tensorflow (v1.3.0) on three servers
in the InfiniBand cluster. We modified a single line of the
source code of Tensorflow to replace the original memory
allocation function with our custom memory allocator (§4.3).
Each server has eight NVIDIA GTX 1080 Ti GPUs. One
of the servers is a master node and also a parameter server,
while the other two servers are workers. We run two main
types of training workloads for deep learning, namely, image
recognition based on Convolutional Neural Network (CNN),

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 123

Resnet-50 Inception-v3 Alexnet

Model

0

1000

2000

3000

T
ra

in
in

g
sp

ee
d

(I
m

a
g

es
/

se
c)

FreeFlow

Host-RDMA

Host-TCP

Weave

(a) Tensorflow image training speed

10 20 30

Time per step (sec)

0.0

0.5

1.0

C
D

F

FreeFlow

Host-RDMA

Host-TCP

Weave

(b) Tensorflow speech training speed
Figure 15: TensorFlow performance on FreeFlow.

GroupBy SortBy

Workload

0

20

Jo
b

co
m

p
le

ti
o

n
ti

m
e

(s
ec

)

FreeFlow

Host-RDMA

Host-TCP

Weave

Figure 16: Spark performance on FreeFlow.

and speech recognition based on Recurrent Neural Network
(RNN).

For image recognition, we run three specific models,
ResNet-50 [29], Inception-v3 [42] and AlexNet [33]. We use
synthetic ImageNet data as training data. Figure 15(a) shows
the median training speed per second with 10-percentile and
99-percentile values. From the results of all three differ-
ent models, we conclude, first, the network performance is
indeed a bottleneck in the distributed training. Comparing
host RDMA with host TCP, host RDMA performs 1.8 to 3.0
times better in terms of the training speed. The gap between
FreeFlow and Weave on container overlay is even wider. For
example, FreeFlow runs 14.6 times faster on AlexNet. Sec-
ond, FreeFlow performance is very close to host RDMA.
The difference is less than 4.9%, and FreeFlow is sometimes
even faster. We speculate that this is due to measurement
noise.

For speech recognition, we run one private speech RNN
model consisting of a bi-directional encoder and a fully-
connected decoder layers, with a hidden layer dimension-
ality of 1024 and a vocabulary size of 100k. The dataset is
4GB large including 18.6 millions samples. In each train-
ing step, GPUs “learn” from a small piece and communicate
with each other for synchronization. Figure 15(b) shows the
CDF of the time spent for each training step, including the
GPU time and networking time. Again, FreeFlow is very
close to host RDMA. The median training time is around 8.7
times faster than Weave.

8.2.2 Spark

We run Spark (v2.1.0) on two servers. One of the server runs
a master container that schedules jobs on slave containers.
Both of the servers run a slave container. The RDMA exten-
sion for Spark [18] is implemented by is closed source. We
download the binary from their official website and did not
make any modification.

We demonstrate the basic benchmarks shipped with the
Spark distribution – GroupBy and SortBy. Each benchmark
run on 262,144 key-value pairs with 2 KB value size. We
set the number of Spark mappers and reducers to 8 and each
of them is a single thread. Figure 16 illustrates the result.
We conclude similar observations as running TensorFlow.
The performance of network does impact the application
end-to-end performance significantly. When running with
FreeFlow, the performance is very close to running on host

RDMA, better than host TCP, and up to 1.8 times better than
running containers with Weave.
9 Related Work
RDMA virtualization for containers: There is an on-
going effort from Mellanox to extend network namespace
and cgroup in Linux kernel to accommodate RDMA for net-
working isolation [34, 35]. It uses MACVLAN to split a
physical interface to multiple virtual interfaces, inserts one
or multiple interfaces to each container, and relies on VLAN
routing to deliver traffic to the correct virtual interface. Ap-
parently, it has portability issues for cloud environments,
since moving an IP means updating VLAN routing in hard-
ware. Also, it does not offer a flexible controllability, be-
cause it allows containers to directly access physical NICs.

Another approach is using programmable hardware to
handle the RDMA virtualization for containers, such as
smart NICs [26] or FPGA [38]. FreeFlow’s advantages com-
pared with such hardware-based solutions are its lower cost
by using commodity hardware and better flexibility to cus-
tomize network features.
RDMA virtualization for VM: HyV [39] is the closest
solution to FreeFlow . It also intercepts the communication
between applications and NIC driver and provides address
translation, QP/CQ mapping, and memory mapping. The
key difference between HyV and FreeFlow is that HyV does
not control data path to provide bare-metal performance in
private clusters, while FreeFlow does for fitting in cloud en-
vironments. This creates more challenges to FreeFlow, such
as making the performance still close to bare-metal qual-
ity while maintaining transparency to applications in data
path. VMM-bypass I/O [37] has a similar design and is-
sues as HyV. VMware has been working on para-virtualizing
RDMA devices called vRDMA [40]. vRDMA is designed
for VMware’s hypervisor and VMs, so it does not inherently
work for containers.
10 Conclusion
In this paper, we presented FreeFlow, a virtual RDMA net-
working solution that provides the isolation, portability and
controllability needed in containerized clouds. FreeFlow
is transparent to applications and achieves close-to bare-
metal RDMA performance with acceptable overhead. Eval-
uations with real-world applications and microbenchmarks
show that FreeFlow can support performance comparable to
bare-metal RDMA and much better than the existing TCP/IP
virtual networking solution. We open source the prototype
of FreeFlow .

124 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

11 Acknowledgments
We would like to thank the anonymous NSDI reviewers
and our shepherd, Hakim Weatherspoon for their helpful
comments. This work was funded in part by NSF awards
1700521 and 1513764.

12 Availability
FreeFlow is open sourced at https://github.com/
Microsoft/Freeflow.

References
[1] Mellanox coredirect. http://www.mellanox.com/page/

products dyn?product family=61&mtag=connectx 2 vpi/,
2010.

[2] Apache spark. https://spark.apache.org/, 2018. Accessed on
2018-01-25.

[3] Arista 7050x & 7050x2 switch architecture. https:

//www.arista.com/assets/data/pdf/Whitepapers/
Arista 7050X Switch Architecture.pdf, 2018. Accessed
on 2018-01-25.

[4] chroot(2) - Linux man page. https://linux.die.net/man/2/
chroot, 2018. Accessed on 2018-01-25.

[5] CNTK. https://github.com/Microsoft/CNTK/wiki, 2018. Ac-
cessed on 2018-01-25.

[6] CoreOS. https://coreos.com/, 2018. Accessed on 2018-01-25.

[7] Docker. http://www.docker.com/, 2018. Accessed on 2018-01-25.

[8] Infiniband architecture specification release 1.2.1 annex a16: Roce.
https://cw.infinibandta.org/document/dl/7148, 2018. Ac-
cessed on 2018-01-25.

[9] Introduction to infiniband. https://en.wikipedia.org/wiki/
InfiniBand, 2018. Accessed on 2018-01-25.

[10] Iperf - the TCP/UDP bandwidth measurement tool. http://

iperf.fr, 2018. Accessed on 2018-01-25.

[11] Kubernetes. http://kubernetes.io/, 2018. Accessed on 2018-01-
25.

[12] Kubernetes networking. https://kubernetes.io/docs/
concepts/cluster-administration/networking/, 2018.
Accessed on 2018-01-25.

[13] Mellanox perftest package. https://community.mellanox.com/
docs/DOC-2802, 2018. Accessed on 2018-01-25.

[14] netpipe(1) - linux man page. https://linux.die.net/man/1/
netpipe, 2018. Accessed on 2018-01-25.

[15] Open vswitch. http://openvswitch.org/, 2018. Accessed on
2018-01-31.

[16] Openfabrics, libibverbs release. https://www.openfabrics.org/
downloads/libibverbs/, 2018. Accessed on 2018-01-25.

[17] Rdma-based apache hadoop. http://hibd.cse.ohio-state.edu/,
2018. Accessed on 2018-01-25.

[18] Rdma-based apache spark. http://hibd.cse.ohio-state.edu/,
2018. Accessed on 2018-01-25.

[19] Rdma-iwarp. http://www.chelsio.com/nic/rdma-iwarp/,
2018. Accessed on 2018-01-25.

[20] rsocket(7) - linux man page. https://linux.die.net/man/7/
rsocket, 2018. Accessed on 2018-01-25.

[21] Single root I/O virtualization. http://pcisig.com/
specifications/iov/single root/, 2018. Accessed on
2018-01-25.

[22] Tensorflow. https://www.tensorflow.org/, 2018. Accessed on
2018-01-25.

[23] Weave Net. https://www.weave.works/, 2018. Accessed on 2018-
01-25.

[24] ABADI, M., BARHAM, P., CHEN, J., CHEN, Z., DAVIS, A., DEAN,
J., DEVIN, M., GHEMAWAT, S., IRVING, G., ISARD, M., ET AL.
Tensorflow: A system for large-scale machine learning. In USENIX
OSDI (2016).

[25] DATADOG. 8 suprising facts about real Docker adoption. https:

//www.datadoghq.com/docker-adoption/, 2016.

[26] DEIERLING, K. Ensuring both high performance and security for
containers. In Flash Memory Summit (2017).

[27] DOCKER. Docker community passes two billion pulls.
https://blog.docker.com/2016/02/docker-hub-two-
billion-pulls/, 2016.

[28] FIRESTONE, D., PUTNAM, A., MUNDKUR, S., CHIOU, D.,
DABAGH, A., ANDREWARTHA, M., ANGEPAT, H., BHANU, V.,
CAULFIELD, A., CHUNG, E., ET AL. Azure Accelerated Networking:
SmartNICs in the Public Cloud. In USENIX NSDI (2018).

[29] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual learning
for image recognition. In IEEE CVPR (2016).

[30] IRON.IO. Docker in production – what we’ve learned launching
over 300 million containers. https://www.iron.io/docker-in-
production-what-weve-learned/, 2014.

[31] JAIN, R., CHIU, D. M., AND HAWE, W. A quantitative measure of
fairness and discrimination for resource allocation in shared computer
systems. DEC Technical Report.

[32] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Using RDMA
efficiently for key-value services. In ACM SIGCOMM Computer
Communication Review (2014), vol. 44, ACM, pp. 295–306.

[33] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Ima-
genet classification with deep convolutional neural networks. In NIPS
(2012).

[34] LISS, L. Containing RDMA and high performance computing. In
ContainerCon (2015).

[35] LISS, L. RDMA container support. In International OpenFabrics
Software Developer’s Workshop (2015).

[36] LISS, L. The Linux SoftRoce Driver. In OpenFabrics Annual Work-
shop (2017).

[37] LIU, J., HUANG, W., ABALI, B., AND PANDA, D. K. High Per-
formance VMM-Bypass I/O in Virtual Machines. In USENIX ATC
(2006).

[38] MOUZAKITIS, A., PINTO, C., NIKOLAEV, N., RIGO, A., RAHO,
D., ARONIS, B., AND MARAZAKIS, M. Lightweight and Generic
RDMA Engine Para-Virtualization for the KVM Hypervisor. In High
Performance Computing & Simulation (HPCS), 2017 International
Conference on (2017), IEEE, pp. 737–744.

[39] PFEFFERLE, J., STUEDI, P., TRIVEDI, A., METZLER, B., KOLTSI-
DAS, I., AND GROSS, T. R. A Hybrid I/O Virtualization Framework
for RDMA-capable Network Interfaces. In ACM VEE (2015).

[40] RANADIVE, A., AND DAVDA, B. Toward a paravirtual vRDMA de-
vice for VMware ESXi guests. VMware Technical Journal, Winter
2012 1, 2 (2012).

[41] STEVENS, W. R., AND RAGO, S. A. Advanced programming in the
UNIX environment. Addison-Wesley, 2013.

[42] SZEGEDY, C., VANHOUCKE, V., IOFFE, S., SHLENS, J., AND WO-
JNA, Z. Rethinking the inception architecture for computer vision. In
IEEE CVPR (2016).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 125

