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Abstract
Reconfigurable datacenter networks (RDCNs) augment tra-

ditional packet switches with high-bandwidth reconfigurable
circuits. In these networks, high-bandwidth circuits are as-
signed to particular source-destination rack pairs based on
a schedule. To make efficient use of RDCNs, active TCP
flows between such pairs must quickly ramp up their sending
rates when high-bandwidth circuits are made available. Past
studies have shown that TCP performs well on RDCNs with
millisecond-scale reconfiguration delays, during which time
the circuit network is offline. However, modern RDCNs can
reconfigure in as little as 20 µs, and maintain a particular con-
figuration for fewer than 10 RTTs. We show that existing TCP
variants cannot ramp up quickly enough to work well on these
modern RDCNs. We identify two methods to address this
issue: First, an in-network solution that dynamically resizes
top-of-rack switch virtual output queues to prebuffer packets;
Second, an endpoint-based solution that increases the conges-
tion window, cwnd, based on explicit circuit state feedback
sent via the ECN-echo bit. To evaluate these techniques, we
build an open-source RDCN emulator, Etalon, and show that
a combination of dynamic queue resizing and explicit circuit
state feedback increases circuit utilization by 1.91× with an
only 1.20× increase in tail latency.

1 Introduction

Modern datacenter applications need high-bandwidth, high–
port-count, low-latency, low-cost networks to connect their
hosts. Unfortunately, traditional packet switches are hitting
CMOS manufacturing limits and are unable to simultaneously
provide both high bandwidth and large numbers of ports [43].
Thus, researchers have proposed augmenting datacenter net-
works with reconfigurable circuit switches (e.g., optical or
wireless) that provide high bandwidth between racks on de-
mand [6, 16, 20, 25, 26, 32, 38, 42, 47, 51, 57].

However, it can be challenging for endpoints to extract
the full potential of reconfigurable datacenter networks (RD-
CNs) that combine both circuit and packet networks. Circuit

switches incur non-trivial reconfiguration delays while they
adjust the high-bandwidth topology, and portions of the circuit
network may be unavailable during these periods. Hence, such
hybrid designs often result in fluctuations between periods
of high bandwidth—when a circuit is provisioned—and low
bandwidth—when the packet network is in use. While periods
of higher bandwidth are attractive in principle, recent propos-
als suggest adjusting the topology frequently. The resulting
bandwidth fluctuations pose a problem for end-host appli-
cations: their active TCP connections must rapidly increase
transmission rates to use the available bandwidth and then
slow down again to avoid massive queuing. In this paper, we
explore these adverse interactions between TCP and RDCNs,
and techniques to mitigate their performance impacts.

To amortize the cost of reconfiguration, circuits must be
provisioned for a long period of time relative to the reconfig-
uration delay of the switch. TCP interactions with RDCNs
were initially explored in the context of switches with mil-
lisecond-scale reconfiguration delays [16, 51]. Given the sub-
millisecond propagation delays found in modern datacenters,
circuits in millisecond-scale reconfiguration networks are en-
abled for many, many round-trip times (RTTs). These early
studies found that TCP was able to adapt to the link speed
changes over these time periods. However, modern recon-
figurable switches that can change link state on the scale of
microseconds [20, 38, 47] have redefined these problems. At
first glance, these lower reconfiguration delays result in lower
overheads and allow more rapid provisioning of bandwidth to
where it is needed. However, when circuit uptimes are only
a few (e.g., <10) RTTs long, TCP’s ramp-up is too slow to
utilize the large (e.g., 10×), temporary bandwidth increase
before the circuit disappears, leading to low circuit utilization
(Section 3). This raises the question of whether an RDCN can
employ the rapid reconfigurations needed to meet changing
traffic demands while also providing good performance.

The performance issues arise from a broken assumption
made by end-hosts about the network: congestion control
algorithms generally assume that bandwidth does not fluc-
tuate at short timescales. We explore the consequences of
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this broken assumption for TCP, and identify two methods, at
different levels in the network stack, for ramping up TCP in
the environment of rapid bandwidth fluctuation.

First, we build on the insight that in RDCNs, bandwidth
fluctuation is not arbitrary; it is part of a known schedule.
Therefore, we can proactively modify the network to trans-
parently influence end-host behavior. In this case, we entice
TCP to ramp up earlier by eliminating packet drops due to
full top-of-rack (ToR) switch virtual output queues (VOQs),
thereby triggering end-hosts to increase their sending rates.
We accomplish this by dynamically increasing the size of
ToR VOQs in advance of provisioning a circuit (Section 5.2).
Dynamic VOQ resizing does not require modifying end-hosts
and, thus, works with existing TCP implementations.

Our second technique involves minor modifications to the
end-host TCP stack to enable further performance improve-
ments. At sending end-hosts, we increase the congestion win-
dow, cwnd, based on explicit circuit state feedback sent by
the reconfigurable switch (Section 5.3). For some rack pair
(S,D), we configure our emulated switch to set the ECN-echo
(ECE) bit in the TCP headers of ACKs sent by D if there is
currently a circuit enabled from S to D . The sender monitors
the ECE stream, explicitly expanding and contracting cwnd
when circuits begin and end, respectively.

To evaluate our solutions, we design and implement an
open-source RDCN emulator, Etalon1, for use on public
testbeds (Section 4). Experiments on 3-rack (48-host) and
8-rack (128-host) emulated testbeds show that dynamic buffer
resizing and explicit circuit state feedback increase circuit uti-
lization by 1.91× while increasing 99th percentile tail latency
by 1.20× (Sections 6.1 and 6.3).

Ultimately, datacenters must adapt to reap the benefits of
RDCNs. In-network changes yield impressive improvements,
and if modifying end-hosts is an option, then even higher
performance is feasible. We make three contributions:

1. We characterize the critical challenge of rapid bandwidth
fluctuation in RDCNs. We use a combination of exper-
imental results and simulations to identify the range of
reconfiguration delays that impact TCP performance, and
show that a wide range of TCP congestion control algo-
rithms suffer from poor performance in these settings.

2. We propose two solutions, at different layers of the network
stack, to ramp up TCP under rapid bandwidth fluctuation:
dynamic buffer resizing and explicit circuit state feedback.
Our evaluation of these techniques shows the benefits that
modifying higher network layers can have for RDCNs.

3. We design and implement an emulation platform, Etalon,
for evaluating hybrid networks end-to-end with real ap-
plications, and use it to demonstrate the efficacy of our
proposed techniques. Etalon is open source [15].

1Named after an optical filter used for solar observation.

2 Background

To better understand the challenges and solutions presented
in this paper, we first examine RDCNs in detail in Figure 1.
While we use optical circuit switching [16, 38, 47, 51] as an
illustrative example for the rest of the paper, the results gener-
alize to other reconfigurable technologies, such as free-space
optics [20, 26] and 60-GHz wireless [25, 32, 57]). We eschew
older millisecond-scale reconfigurable switches [16, 51] for
modern microsecond-scale switches [20, 38, 42, 47], as the
nature of the challenges and solutions differ with timescale.

2.1 Hybrid Network Model
We consider an RDCN of N racks of M servers, with each rack
containing a ToR switch (Figure 1(a)). ToRs connect racks to
an arbitrarily-complex packet network (one or more switches)
and a circuit network composed of a single, central circuit
switch. The packet network is low bandwidth (e.g., 10 Gb/s),
but can make forwarding decisions for individual packets.
The circuit network is high bandwidth (e.g., 80-100 Gb/s),
but makes forwarding decisions for many packets on much
longer timescales to amortize its reconfiguration penalty.

Reconfiguration time is an inherent trade-off in circuit-
switched networks. Instead of providing continuous connec-
tivity between all endpoints, like in a packet network, a circuit
network establishes exclusive, but temporary, connections be-
tween pairs of endpoints. Here, the endpoints are the ToRs.
To expand this design to provide full connectivity, the network
periodically changes which pairs of endpoints are spanned
by a circuit. The physical limits of the specific underlying
technology determine how long this reconfiguration takes.

Following prior work [38, 39, 47], we make the pessimistic
assumption that, during circuit reconfiguration, no circuit
links can be used. This allows us to apply our results to a
broader set of technologies. The packet network, on the other
hand, can be used at all times. Both switches source pack-
ets from N ×N virtual output queues (VOQs) on the ToRs.
The circuit switch itself is queue-less: It functions as a cross-
bar, only allowing configurations that form perfect match-
ings [2, 16, 38, 39, 47, 51]. I.e., a given sender is connected
to exactly one receiver, and vice-versa. Thus, at any point in
time, the circuit switch can drain at most one VOQ on each
ToR, whereas the packet switch may drain multiple VOQs on
each ToR simultaneously.

2.2 Computing Circuit Schedules
The circuit scheduler is tasked with estimating demand on
the network and then computing a set of configurations that
best satisfies this demand (Figure 1(b)). During reconfigura-
tion, the circuit network is unavailable. Therefore, the circuit
scheduler must balance the competing objectives of (1) servic-
ing demand from many different rack pairs by reconfiguring
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Figure 1: Overview of RDCNs.

frequently and (2) achieving high circuit uptime by allowing a
configuration to persist for a (relatively) long time. To achieve
a high relative uptime of 90%, schedules typically hold a par-
ticular circuit state for 9× the duration of a reconfiguration.

Network scheduling in most RDCNs entails mapping
rack-level demand to a set of circuit configurations (port-
matchings) with corresponding time duration2. Any “leftover”
demand is handled by the lower-bandwidth packet switch.
Borrowing terminology from prior work [47], we refer to a
single circuit uptime as a day and the reconfiguration period,
during which the circuit switch is offline, as a night. Night
length is determined by switch technology and is generally
10-30 µs [20,38,39,47]. To allow for at least 90% link uptime,
the average day length must be ≥9× greater than the night
length, or ∼90-270 µs. A series of one or more day/night pairs
that implement a set schedule is a week. Weeks should be suf-
ficiently long (e.g., 2 ms) to amortize schedule computation.

Scheduling is a three-step loop: 1) Demand for the next
week is estimated (e.g., through ToR VOQ occupancy); 2) An
algorithm computes the schedule for the next week; 3) The
schedule is disseminated to the switch. Scheduling algorithms
for RDCNs (e.g., Solstice [39] and Eclipse [2]) use skew and
sparsity in demand to minimize the number of configurations.
Prior work on circuit scheduling informs, but is orthogonal
to, our investigation into the resulting bandwidth fluctuations.

2.3 Schedule Execution
Once a schedule is disseminated to the circuit switch, it runs
the circuit configurations for their respective duration (Fig-
ure 1(c)). After reconfiguration, a flow may transition from
using the packet network to using the circuit network and
vice versa. Because of the short day length, flows likely spend
only a few (e.g., <10) RTTs on the circuit network each day.
Therefore, transport protocols must cope with large (e.g., 10×)
bandwidth variations based on which network a flow traverses.

2A major exception being RotorNet [42], which uses a predetermined
schedule. It still suffers from the same bandwidth fluctuations.

Prior work has avoided the bandwidth fluctuation problem
by segregating traffic into mice and elephant flows and routing
them exclusively over the packet and circuit networks, respec-
tively [16, 38]. Each flow encounters one bandwidth regime,
albeit the elephant flows must pause during circuit downtime.
However, recent work has proven that such segregation is
sub-optimal [19]. We adopt a non-segregated approach, treat-
ing the hybrid network as indivisible and routing all traffic
over available circuit links, thus trading off reduced network
complexity for bandwidth fluctuation.

3 TCP in RDCNs: Trends and Challenges

This section investigates how TCP’s interactions with RDCNs
are evolving with the underlying hardware trends.

3.1 Evolving Reconfiguration Delays
Circuit networks are characterized by their inherently high
bandwidth. However, that comes at the cost of flexibility. With
the exception of pathological examples, switching flexibility
enables the circuit network to better serve diverse workloads.
Improving flexibility by reducing the reconfiguration time has
been an ongoing challenge for hardware designers, with the
hope that circuit technologies will eventually be capable of
approximating packet switching.

A decade ago, the best MEMS (Micro-Electro-Mechanical
Systems) optical switches, which reconfigure by physically
rotating laser-directing mirrors, changed paths on the order
of a few milliseconds. If we generously assume that such a
switch can reconfigure in 1 ms, our 90% uptime target implies
that each configuration will persist for 9 ms. On network
timescales, this is an eternity: Assuming a conservative RTT
of 60 µs, 9 ms is 150 RTTs.

To understand how TCP behaves on RDCNs, we use an em-
ulator, described in Section 4, and analyze the expected TCP
sequence number of flows over time. We run an 8-rack sched-
ule with 1 ms nights and 9 ms days, using the CUBIC [24]
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(a) A decade ago: 1-ms reconfiguration delays and 9-
ms circuit uptimes give TCP time to saturate the link.
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(b) Today: TCP struggles to fill the link for circuits
with short 20 µs reconfiguration delays and 180 µs up-
times.

Figure 2: TCP CUBIC performance, then and now. Cir-
cuit days are shaded in blue. Dotted lines are the corre-
sponding VOQ length.

variant of TCP. 16 emulated hosts on rack 1 each send a flow
to a counterpart host on rack 2. In this experiment, we con-
sider a circuit switch that delivers 8× higher bandwidth than
the packet network. The ToR VOQ capacity is 16 packets. The
expected sequence number is measured as packets leave the
hybrid switch, as described in Section 4.2, and then averaged
across experimental runs.

Figure 2a shows the results of this experiment. Circuit
uptimes are delineated by the blue vertical shaded regions.
Since the sequence number represents the number of bytes
transferred, the slope of a line corresponds directly to a flow’s
achieved bandwidth. We always compare to two baselines:
(1) optimal, which is calculated based on the line rate of
the packet and circuit links (taking into account that the net-
work is offline during reconfigurations), and (2) packet only,
which is calculated assuming that flows always use the packet
network only (and that the packet network is always avail-
able). Intuitively, circuit utilization is how well the slope of a
line matches that of optimal during the blue shaded regions.
Experimental results can never exceed optimal, and any im-
provement over packet only illustrates the benefit of the hybrid
network over a purely packet network. Throughout our anal-
ysis, we use the length of the ToR VOQs, described further
in Section 4.2, to understand TCP’s behavior. For a particular
line on a sequence number graph, the dotted line in the same
color reports the corresponding average VOQ length.

We can see that TCP roughly keeps up with the optimal
throughput of the hybrid network, saturating the link. During
the circuit days, which are shaded in blue, the VOQs contain
approximately 8 packets. Since the VOQs never empty except
for a brief moment when the days begin, there are always
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Figure 3: Simulated flow completion time for transfer-
ring 25 GB of data using 10 flows, for various buffer sizes.

packets to send over the network, resulting in high utilization.
Let us consider how hybrid networks have evolved over the

past decade. Figure 2b shows the same results for a modern
schedule with 20 µs nights and 180 µs days. The ratio of
circuit uptime is the same, 90%, but TCP performs differently.
Because the number of RTTs in a day has decreased from
∼150 to ∼3, TCP does not ramp up before the circuit ends.
For TCP CUBIC, 3 RTTs is simply not enough time to in-
crease the congestion window (cwnd) [24]. Moreover, packet
drops during the subsequent reconfiguration period and the
transition to the packet network cut TCP’s sending rate. While
TCP does recover while using the packet network, the process
repeats at the next cycle, with TCP unable to ramp up to use
the circuit network’s full bandwidth regardless of how many
periods elapse. We can also see this manifested in the VOQ
length: When a day begins, the VOQs drain immediately to
fill the larger bandwidth-delay product (BDP) of the circuit
network, but there are insufficient outstanding packets to do
so completely and insufficient time for TCP to ramp up, so
the VOQs stay empty throughout the day.

To extend these results to a wider range of circuit uptimes,
we ran a simulation that transfers 25 GB of data from one
rack to another using 10 TCP CUBIC flows3. Figure 3 shows
the resulting flow completion times (FCTs) for five orders of
magnitude of circuit uptimes, where each line corresponds
to a different amount of queuing at the ToR switch. In all
cases, the RTT is 60 µs. The takeaways here are twofold:
First, considering the smaller queue sizes (8-32 packets), the
FCTs are low for short (e.g., 10 µs) and long (e.g., 10 ms)
days, yet degrade by 2−4× for moderate values (e.g., 1 ms).
For short circuits, the network is effectively approximating
packet switching, whereas for long circuits, the uptime is suffi-
cient that fluctuating bandwidth is not an issue. Unfortunately,
today’s RDCNs fall in the middle region. Techniques to adapt
TCP for RDCNs, like those presented in this paper, are neces-
sary as long as circuit reconfiguration and propagation delays
place us in a regime similar to this. We predict that the order-
of-magnitude improvement in underlying circuit technology
that is required to reach the "short circuits" region, where the
network approximates packet switching and TCP ramp-up is
no longer a problem, is still many years away.

3The simulator uses 1500B packets while the Etalon emulator uses 9000B
packets. For the experiment in Figure 3, we scale the buffer size by 6× for
easier comparison. I.e., for “8 packets”, the buffer was 8×6 = 48 packets.
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We find inspiration, however, from a second takeaway:
With larger queue sizes (e.g., 64 and 128 packets), the flows
complete quickly regardless of the circuit uptime. This in-
dicates that large buffers build up enough excess in-flight
data to burst packets quickly when more bandwidth becomes
available. We discuss this further in Section 5.1, and this re-
alization become the basis for the dynamic buffer resizing
technique that we propose in Section 5.2.

3.2 Categorizing TCP Variants

Before diving into our technical solutions, it is important to re-
member that TCP comes in many shapes and sizes. The exper-
iments above use TCP CUBIC, a common loss-based variant,
but there are dozens of other variants designed for a plethora
of network contexts, from low latency to high bandwidth to
frequent loss, and more. This section gives an overview of
the broad classes of TCP variants and demonstrates that no
existing variant works well for hybrid networks.

At the highest level, the goal of TCP congestion control is
to maximize the sending rate while fairly sharing the avail-
able bandwidth between flows and avoiding overloading the
network. Determining the sending rate involves looking at sig-
nals from the network to infer its current state. The efficacy of
a congestion control algorithm depends on how well it gleans
information from such signals. Below, we discuss the three
main categories of signals that TCP variants use to detect
congestion (packet loss, network delay, and explicit network
feedback), and discuss how they are effected by RDCNs.

3.2.1 Loss-based Congestion Control

Packet loss is the most commonly used congestion signal. The
intuition here is that when the sender determines that packets
are being lost, it assumes that the losses are a result of network
congestion. Examples include TCP CUBIC [24], Reno [31],
BIC [54], Illinois [40], and Highspeed [18]. In the absence
of loss, these protocols increase their transmission rates to
probe for available bandwidth, until a loss occurs. Different
protocols choose different approaches for this probing, but
all of them limit the aggressiveness of their probing to coex-
ist reasonably with other TCP variants. This results in poor
performance in RDCNs since these protocols cannot ramp up
quickly enough to make use of the high-bandwidth circuits.

3.2.2 Delay-based Congestion Control

Another technique is to use measurements of the packet RTT
in the congestion control protocol. Such protocols use RTT
increases as an indicator of queue buildup in the network,
and therefore congestion. Examples include BBR [5], TCP
Vegas [4], and TIMELY [45]. Vegas and BBR are both rate-
based protocols that use the difference between the offered
load and the achieved throughput to detect queue buildup.

TIMELY uses high-fidelity NIC timers to measure the RTT
and then paces transmission based on delay gradients.

Like other TCP variants, delay-based variants are typically
conservative in their probing for available bandwidth to ensure
fair coexistence. An additional interaction with RDCNs is that,
due to topology differences, the circuit and packet networks
typically have different propagation delays (as discussed in
Section 4.4: 30 µs vs. 10 µs, respectively). This poses a
challenge for TCP variants that use changes in RTT as an
indication of queuing.

3.2.3 Explicit Feedback–based Congestion Control

Finally, some TCP variants rely on explicit feedback from the
network to detect congestion. Two manifestations of this are
XCP [33] and DCTCP [1]. DCTCP responds to switch signals
sent when a switch is likely to drop packets soon. If the act
of a switch accepting a packet would increase its internal
buffer length beyond a threshold (which is set to be lower
than the total capacity of the queue), then the switch accepts
the packet but sets the ECN flag in its TCP header. This flag is
then communicated back to the sender via the packet’s ACK.
The sender monitors this stream of ECN marks to estimate
when the network is close to being congested.

For domains where a single entity controls the senders and
the network, coordination in this manner is a direct technique
for improving performance. In Section 5.3, we propose a
similar technique for adapting to bandwidth fluctuations in
RDCNs that uses the ECE bit in ACKs to notify a sender
when one of its flows transitions between the packet network
and a high-bandwidth circuit.

3.2.4 A Common Underlying Issue

We repeat the experiment in Section 3.1 with the 17 TCP
variants pre-installed on Ubuntu 18.04. Figure 4a shows the
average circuit utilization, which does not exceed 55%. Fig-
ure 4b visualizes the expected TCP sequence number over
time for a selection of 8 of the 17 variants. Most perform
slightly better than CUBIC, with BBR and NV falling behind,
but no variant is aggressive enough to overcome the limitation
that 3 RTTs is insufficient time to ramp up.

These results demonstrate that the challenge of TCP not
ramping up quickly enough is not isolated to CUBIC, and
cannot be solved by simply choosing a more appropriate
TCP variant. Instead, we need a technique that more-directly
interacts with the basic properties of TCP. Furthermore, the
fact that all of the (sometimes quite) different TCP variants
perform similarly (i.e., with surprisingly little variation, given
their technical differences) suggests that they are all hampered
in a similar way. If we address this common issue, then we
have the potential to improve circuit utilization across the
board, for all of these TCP variants.
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4 The Etalon Emulator

One of the key challenges in understanding TCP performance
on RDCNs is performing repeatable experiments at scales
appropriate for modern distributed cloud applications (i.e.,
across dozens or hundreds of hosts). In this section, we present
our open-source emulator, Etalon [15], which measures the
end-to-end performance of real applications and end-host
stacks on emulated RDCNs in public testbeds.

4.1 Overview
Figure 5 presents an overview of Etalon. Each of the N phys-
ical machines emulates a rack of M servers using Docker
containers [11, 44]. Containers are connected to the physical
NIC using macvlan [12], which virtualizes a physical NIC into
multiple virtual NICs, connecting them with a lightweight
layer-2 software switch. tc [49] controls link bandwidths

between the containers and the virtual switch, emulating a
host-to-ToR link.

A separate physical machine emulates the reconfigurable
datacenter network, as described in Section 4.2. Therefore, a
cluster of N +1 physical machines can emulate N ×M virtual
hosts. For convenience, each physical host is connected to
separate control and data networks, but this is not necessary.
The experiment harness communicates with the testbed using
RPyC [48]. Section 4.3 explains how time dilation enables
Etalon to emulate many hosts with high-bandwidth links on a
small testbed.

4.2 Click Software Switch

The (N +1)st machine emulates the RDCN itself, namely the
ToR VOQs and the hybrid switch. This host runs a Click [34]
software switch that uses DPDK [13] to process packets at line
rate. We choose to emulate ToR VOQs in the software switch
to make circuit and packet link emulation straightforward.

Figure 6 shows the software switch’s internals. Packets
enter the switch via DPDK [13] and are sent to an emu-
lated ToR VOQ based on their (source rack, destination rack)
pair. To achieve line rate, Etalon uses the Click elements
FromDPDKDevice [7] and ToDPDKDevice [8] to exchange
packets with the NIC. Packets are pulled from each VOQ
by either the packet switch or the circuit switch. In Figure 6,
packet uplink i is connected to the N VOQs in ToR i, pulling
packets from these VOQs in a round-robin fashion. A packet
pulled by a packet uplink enters the packet switch, where it
is multiplexed over a packet downlink and transmitted using
DPDK. If a packet would be dropped in the packet switch,
it is held at the ToR VOQ (similar to PFC [28]). Circuit link
i is connected to the ith VOQ of each of the N ToRs via a
pull switch. A settable “input” value on pull switch i connects
circuit link i to exactly one VOQ at a time. After packets
traverse the circuit link, they are transmitted using DPDK. Be-
fore releasing a packet, the Click hybrid switch logs its IP and
TCP headers, the current circuit state, and timing information.
These logs are used offline to analyze the expected sequence
number over time. The experiment harness communicates
with the software switch using Click’s control socket.

Our software switch contains three control elements (shown
in gray in Figure 6): a demand estimator, a scheduler, and
a schedule executor. The demand estimator estimates rack-
to-rack demand using ToR VOQ occupancy. The scheduler
computes a schedule from this demand, which is then run
by the schedule executor by modifying the circuit link pull
switches’ “input” value (as described above). Our scheduler
element is pluggable: We implement Solstice [39] as an ex-
ample, but modify its objective to schedule maximal demand
within a set window W (like Eclipse [2]), rather than schedul-
ing all demand in unbounded time. We integrate Solstice,
however, purely for implementation completeness. For our
evaluation, a simple fixed strobe schedule, as described in
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Figure 6: The Click software switch emulates the ToRs, the packet and circuit networks, and scheduling elements.

Section 4.5, is sufficiently illustrative.

4.3 Time Dilation
As the goal of Etalon is to emulate RDCNs on public testbeds,
the machine emulating the hybrid network likely has only
a single high-speed NIC. However, we wish to emulate a
switch with N high-speed ports. We solve this problem with
time dilation (TD). Originally proposed for VMs [21, 22, 50]
and recently containers [35, 55, 56], TD provides accurate
emulation of higher-bandwidth links by “slowing down” the
rest of the machine. We refer to the constant factor by which
time is dilated as the time dilation factor (TDF). We imple-
ment an open-source interposition library called LibVirtu-
alTime (LibVT) [37], which applies TD to many common
syscalls without requiring applications changes. We catch:
clock_gettime(), gettimeofday(), sleep(), usleep(),
alarm(), select(), poll(), and setitimer(). Extending
LibVT to other syscalls is trivial. We verify that common
network benchmarks (iperf [29], iperf3 [30], netperf [27],
sockperf [41], flowgrind [58,59], ping [46]) perform correctly
with TD. We also limit CPU time for containers with respect
to TD. Using time dilation to emulate high-speed links is one
of Etalon’s main advantages.

4.4 Etalon Testbeds
We use two testbeds for our experiments: a CloudLab cluster
emulating 8 racks (128 hosts) and a local cluster emulating 3
racks (48 hosts). We use the large CloudLab cluster to validate
the Etalon emulator, and run our experiments on the small
local cluster. For the contributions in this paper, we do not
require a large cluster or complex workload.

The local testbed uses four servers to emulate three racks
of 16 machines plus the hybrid switch, as described in Sec-
tion 4.2 and Figure 5. Each physical machine has 2 × 20-

core 2.8 GHz Intel Xeon E5-2680v2 and is connected to a
40 Gb/s Ethernet data network (with jumbo frames). We also
use Etalon on the public CloudLab APT cluster [9,14], where
nine R320 machines emulate eight racks of 16 hosts each and
the hybrid switch. Each APT machine has an 8-core 2.1 GHz
Intel Xeon E5-2450 and is connected to a 40 Gb/s Ethernet
data network (with jumbo frames). At the time of our experi-
ments, the CloudLab APT cluster was configured for 56 Gb/s
InfiniBand, so we manually reconfigured the switches into
40 Gb/s Ethernet mode.

We use a TDF of 20× across our experiments. For ex-
ample, in our 3-rack cluster, we emulate a 3-port 10 Gb/s
(0.5 Gb/s)4 packet switch and a 3-port 80 Gb/s (4 Gb/s)
circuit switch. Outside of TD, the network can produce
3× 0.5 Gb/s+ 3× 4 Gb/s = 13.5 Gb/s of total traffic, far be-
low our data network’s 40 Gb/s physical link speed. Each
per-container link (i.e., each intra-rack link between the ToR
and a host) is limited to 10 Gb/s (0.5 Gb/s).

Packet switch up/down links have 5 µs (100 µs with TDF)
of delay each. Prior work assumes that the circuit network
consists of ToRs connected to a pod-level central circuit
switch, thus requiring long fibres (in the case of an optical
network) [16]. To model this, we conservatively configure the
circuit delay as 30 µs (600 µs), or 3× higher than the total
packet link delay (5 µs× 2 = 10 µs total). To avoid out-of-
order packet delivery, if there is a circuit scheduled between
racks S and D, then we disable the packet switch for rack
pair (S,D) both during the reconfiguration leading up to a
circuit and during the circuit period itself. Therefore, between
S and D there exists exactly one connection: either packet or
circuit. This is an example of non-segregated routing: Mice
and elephant flows traverse the same links.

4Values in parenthesis represent bandwidth/delay outside of TD, i.e.,
actual bandwidth and delay values.
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Figure 7: An 8-rack strobe schedule. All (src rack, dst
rack) pairs can communicate 1/7th of the time.

4.5 Schedule and Workload
This paper focuses specifically on congestion control mecha-
nisms, and therefore we believe that a simple traffic pattern is
sufficient. With a couple of exceptions, we use the following
schedule and workload for all experiments. Extending this
investigation to complex workloads is future work.

Schedule We use a strobe schedule that, for a cluster with
R racks, creates a circuit from a rack to each other rack 1

R−1
of the time5. Figure 7 shows how, for an 8-rack schedule,
a rack connects to each other rack in turn, repeating after a
week. Solstice [39] would produce this schedule for an all-
to-all workload such as a MapReduce shuffle [10]. For our
experiments, a 25-rack cluster (described next) with 20 µs
nights and 180 µs days (90% uptime) yields a week of dura-
tion (20 µs+180 µs)× (25−1) = 4800 µs. The time between
circuit days is 4800−180 = 4620 µs.

Workload The 16 emulated hosts on rack 1 each use flow-
grind [58, 59] to send a TCP flow to their counterpart host on
rack 2. The other racks are idle. We choose a flow duration
of 3000 weeks, or 14.4 seconds for a 25-rack strobe schedule
with 4800 µs per week. Each set of three weeks is treated as
one experimental run, and the 1000 runs are averaged when
reporting expected sequence number and VOQ length.

To better illustrate our contributions, we take advantage
of our simple workload, described above, to emulate a larger
testbed. Since our workload involves only racks 1 and 2, from
the perspective of either of those racks, the cluster size effects
only the duration between circuits. Therefore, we mimic a
larger cluster by artificially lengthening this duration. We use
this technique to run a 25-rack strobe schedule on our 3-rack
local testbed.

4.6 Validating Etalon
We validate Etalon on the 8-rack CloudLab cluster using a
strobe schedule while sending TCP traffic between pairs of
racks for 2 seconds. ACKs are diverted around the switch
for this one experiment to avoid ACK loss. By bypassing the
hybrid switch, ACKs are transported instantly across the core
of the emulated network, enticing TCP to ramp up faster, thus

5A rack need not connect to itself, so there are R−1 days in a week.

Expected Experimental Mean Std. Dev.

Circuit day 180µs 180.25µs 0.04µs
Week length 1400µs 1400.02µs 0.05µs

Packet utilization 10 Gbps 9.93 Gbps 0.75 Gbps
Circuit utilization 80 Gbps 79.99 Gbps 1.60 Gbps

Table 1: Validating Etalon’s timing and throughput.

nullifying the bandwidth fluctuation described in Section 3.
This is, of course, an unrealistic technique for actual networks,
but we employ it to validate the Etalon emulator. We present
timing and bandwidth results in Table 1. These results demon-
strate that the emulator is sufficiently accurate to achieve the
desired circuit schedule times (night and day lengths) and
packet and circuit bandwidths.

5 Overcoming Rapid Bandwidth Fluctuation

As discussed in Section 3, the short uptimes (e.g., < 3 RTTs)
of modern reconfigurable datacenter networks create band-
width fluctuations such that TCP is unable to fully utilize the
available bandwidth. This section describes two distinct tech-
niques, implemented at different network layers, that adapt
TCP to this challenge: 1) dynamic VOQ resizing that transpar-
ently prebuffers packets at the ToR before a circuit activates,
and 2) explicit circuit state feedback to end-hosts that directly
triggers a cwnd increase. Before introducing our techniques,
however, we first consider a simpler, static-buffer approach
that illustrates the bandwidth and latency trade-off that our
solutions must navigate.

Section 3.2 presented the general signals that TCP variants
use to infer network congestion. Increasing switch buffer sizes
masks packet loses caused by queue overflows. For loss-based
TCP variants like CUBIC and New Reno, removing this con-
gestion signal triggers ramp-up. However, this technique is
not appropriate for delay-based variants such as TIMELY or
Vegas. We demonstrate in Section 6.2 that for variants which
rely at least partially on loss as a congestion signal, hiding
congestion-based drops is effective at increasing circuit uti-
lization. Our second technique, explicit circuit state feedback
via the ECE-echo bit, is more general since it provides a di-
rect signal to end-hosts, but of course has the trade-off that it
requires modifying end-hosts.

5.1 Leveraging VOQs to Increase Bandwidth

It is well understood that switch buffer sizing presents a trade-
off between high bandwidth and low latency [5, 17]. The
more traffic that can be queued up in the network, the better
it will be able to saturate links in the presence of transient
demand—or, in our case, capacity variations—because pack-
ets will be available to burst immediately in the event of a
capacity increase. However, when packets incur queuing la-
tency, the effective round-trip time increases. Because latency
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(and tail latency in particular) impacts short flow—and po-
tentially job—completion times, much work on datacenter
transport protocols has focused on achieving high bandwidth
while keeping queues short [1, 5]. As a starting point toward
mitigating the effects of bandwidth fluctuation in RDCNs,
we experiment with various sizes of static ToR VOQs and
demonstrate that loading the network with excess traffic does
help saturate the high-bandwidth circuits, but, as expected, at
the cost of high latency.

Using the schedule and workload described in Section 4.5,
we configure the hosts to run TCP CUBIC, vary the size of
the ToR VOQs from 4 to 128 packets, and examine the impact
on circuit utilization. Figure 8a. shows utilization measured
as the aggregate achieved bandwidth of all of a rack’s flows
versus the maximum bandwidth the flows should have been
able to achieve, averaged over all of the circuit periods in an
experiment. For small buffers, circuit utilization is low. Large
buffers fare better, with 64 packets building up a sufficient
“backlog” of packets to absorb the bandwidth fluctuations.

Figure 8b shows the expected TCP sequence number dur-
ing the lead-up to a circuit day, for various queue sizes, as
measured by the software switch (Section 4.2). The slope of
each line is a flow’s achieved bandwidth. The optimal and
packet only baselines are computed as in Figure 2. Larger
buffers yield a steady convergence to optimal. While TCP
grows at a rate of one packet per RTT, regardless of buffer
size, larger switch buffers allow flows to queue up a packet
backlog which then drains during circuit uptime, as shown by
the dotted VOQ lines. The VOQ length is level throughout
the packet network period.

Finding the “proper” VOQ size for a hybrid switch is dif-
ficult. Common wisdom is to use the bandwidth-delay prod-
uct (BDP) of the network, but the BDP is different for the
packet network and the circuit network: ∼2 and ∼34 packets,
respectively. A time-weighted average based on the sched-
ule suggests ∼8 packets may be appropriate. As shown in
Figure 8a, however, none of these values provide full circuit
utilization: 64+ packets are needed6. However, we cannot
simply adopt queues this large because of their high latency.
In a datacenter, where link lengths are short, queuing delay
impacts tail latency, which in turn directly impacts distributed
applications [1]. Figure 8c shows 99th percentile tail latency
for the various ToR VOQ sizes, measured as each packet en-
ters and leaves the software switch. As expected, the packet
and circuit latencies both grow as we increase the buffer size.

We want the best of both worlds: Can we achieve full
circuit utilization while simultaneously not incurring a latency
penalty? No static buffer configuration achieves this. The
following subsections describe two techniques to meet this
goal: dynamic buffer resizing (Section 5.2) and explicit circuit
state feedback to end-hosts (Section 5.3).

6Our later experiments show that ∼45 packets may suffice.

5.2 Dynamic Buffer Resizing

We propose dynamically resizing ToR VOQ capacity to rem-
edy the effects of rapid bandwidth fluctuations on TCP. This
is an entirely in-network solution, which, to our knowledge,
has not been explored in the context of network scheduling.
In this section, we focus specifically on loss-based variants of
TCP, such as CUBIC.

Our key insight is that bandwidth fluctuation within RD-
CNs is not arbitrary: It is part of a schedule and is known in
advance. With this knowledge, we can align in-network buffer
sizes with either the packet switch or the circuit switch in real
time. By itself, a packet switch can effectively achieve full
throughput with a very small buffer (e.g., 4 packets), whereas
large buffers cause queuing delay, as shown in Figure 8c.
The previous section demonstrated that a circuit switch needs
larger buffers (e.g., 64+ packets) to achieve full utilization due
to bandwidth fluctuations. With dynamic buffer resizing, we
take a step in the right direction by keeping buffers shallow
when the packet switch is in use and deep when a circuit is
active. Doing this naïvely (i.e., resize buffers when the circuit
comes up) provides little benefit; there is simply not enough
time in one day for TCP to grow to fill the circuit link, re-
gardless of how large the buffer. Data needs to be available
immediately at circuit start (either buffered or via a high TCP
sending rate); ramping up ex post facto means that circuit
time has already been wasted.

Instead, we dynamically resize ToR VOQs for a (source,
destination) rack pair in advance of a circuit starting for that
pair. This implies that if the circuit schedule dictates that
this rack pair should spend most of the time using the packet
switch, then small buffers will be used to avoid incurring addi-
tional latency. Increasing a rack pair’s VOQ size provides two
benefits: 1) Packets build up in the queue and are then drained
immediately when the circuit activates, creating a momentary
burst of traffic, and 2) When the buffered packets drain at
circuit start, they generate a surge of ACKs that increase the
sender’s congestion window (cwnd) and sending rate. Exactly
how quickly cwnd grows depends on the TCP variant in use.

Our buffer resize function has three parameters:
resize(s,b, τ), where s and b are the small and large buffer
sizes in packets, respectively, and τ is how early a buffer
should be resized in advance of the circuit start. For the rest of
the paper, we use s = 16 and b = 50. τ is a trade-off: Resizing
too late means low circuit utilization, but resizing too early
increases latency. We vary τ in experiments in Section 6.1.
While the value of τ impacts the circuit utilization/latency
trade-off, we find that waiting to resize the buffer back to s
after a circuit stops (and thus retaining large buffers for a
short time while the packet network comes back into use)
has no benefit. Thus, we always reset buffers back to s
immediately after circuit teardown.
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(b) Expected TCP sequence number vs. time, for vari-
ous static buffer sizes. Circuit days are shaded in blue.
Dotted lines are the corresponding VOQ length.
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Figure 8: Tradeoffs of various static VOQ sizes. Larger buffers improve utilization at the cost of latency.

5.3 Incorporating Explicit Network Feedback

Dynamically resizing ToR VOQs is a transparent, in-network
technique that raises circuit utilization without harming la-
tency and does not require end-host modifications. However,
this approach is intended for loss-based congestion control
schemes and does entail additional latency and buffering. In
this section, we propose a direct form of circuit state feedback
that applies to more TCP variants (e.g., delay and explicit-
feedback–based schemes) and ultimately mitigates this la-
tency penalty. Of course, the trade-off is that techniques in-
volving explicit feedback require modifying the TCP conges-
tion control algorithm running at the sender, making them
non-transparent and more difficult to deploy.

The idea behind explicit network feedback is simple: No-
tify the sender when a flow is traversing a circuit and should
ramp up. However, the delay in this feedback reaching the
sender is crucial. Since circuits are live for as few as 3 RTTs,
a signal that requires 1 RTT to propagate to the sender (e.g.,
marking ECN bits of outgoing flows), provides limited bene-
fit. We tighten the feedback loop by instead marking ACKs
as they return to the sender. For some rack pair (S,D), we
modify our software switch to set the ECN-echo (ECE) bit in
the TCP headers of ACKs sent by D, if there is currently a
circuit enabled from S to D. The hybrid switch examines the
circuit state and marks ACKs after they traverse the circuit
link, so the “freshness” of the feedback signal is equal to the
propagation delay of a single packet link between the ToR
and the sending end-host, S.

We create a pluggable TCP congestion control module
for Linux called reTCP (REconfigurable datacenter network
TCP) which looks at this stream of ECE bits, multiplicatively
increasing its cwnd by α ≥ 1 on 0→ 1 transitions and decreas-
ing it by 0 ≤ β ≤ 1 on 1→ 0 transitions. reTCP is an edge
detector: It modifies cwnd on ECE-bit state transitions, not for
every packet. We set α = 2 and β = 0.5, based on the results of
a parameter sweep. Intuitively, this provides higher circuit uti-
lization because TCP will immediately have a higher sending
rate when a circuit starts.

Our reTCP implementation is based on TCP New
Reno [23] and relies on its congestion control algorithm, in
addition to the above-mentioned technique. reTCP also re-

quires a single-line kernel change, as the kernel only passes
ECE flags to congestion control modules if ECN is enabled.
Enabling ECN shrinks cwnd upon receiving an ECE-marked
packet (because ECE bits typically convey congestion infor-
mation), so we leave ECN disabled and instead modify the
kernel to always pass the ECE flag to reTCP.

reTCP is beneficial on its own by increasing the TCP send-
ing rate when a circuit begins, but in combination with dy-
namic buffer resizing, its benefits multiply. As a starting point,
consider the period when the packet network is active, oper-
ating with static VOQs (not dynamic buffer resizing). The
sender ramps up to a steady state that saturates the packet
network bandwidth and VOQ capacity. Suppose that we trig-
ger a reTCP cwnd increase during this regime. The network
would drop the additional packets and the sender would slow
back down, with no benefit. However, dynamic buffer resiz-
ing is specifically designed to provide extra VOQ capacity to
flows before circuit start, but the usefulness of this capacity
and for how long it must be available is determined by the
sender’s ramp-up rate. The two techniques play to each other’s
strengths: Combining them, dynamic buffer resizing provides
more capacity for flows, and then reTCP fills it. When used in
this way, we modify reTCP to mark ACKs not at the start of
a circuit, but at the start of the dynamic buffer resizing period.
By increasing cwnd at the same time that the VOQs grow,
reTCP quickly fills the larger capacity, dramatically reducing
the duration of prebuffering required to achieve full utiliza-
tion. Bringing the collaboration full-circle, reTCP’s ramp-up
burst reduces the prebuffering duration, which in turn lessens
the time fraction during which the network experiences deep
buffers, thus mitigating the ensuing tail latency spike. Sec-
tion 6.3 visualizes how dynamic buffer resizing and reTCP
jump-start the TCP sender just in time for the circuit network.

Instead of communicating circuit state on-demand via
ACKs and their ECE bits, an alternative design is to inform
end-hosts directly using control plane messages, similar to
how the ToRs are notified to increase their VOQ capacity
prior to circuit start. This would allow the sender to increase
its cwnd exactly when desired, instead of after the first marked
ACK arrives. However, this requires invasive modifications
to the end-hosts, since the sender TCP stack would need to
communicate with the central scheduler. Our approach is
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(b) Expected TCP sequence number vs. time, for vari-
ous prebuffering durations. Circuit days are shaded in
blue. Dotted lines are the corresponding VOQ length.
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Figure 9: Dynamic buffer resizing improves circuit utilization at the expense of tail latency.
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less reactive but more practical because it uses existing TCP
header fields, modifies only a few lines of code, and avoids
distributed control challenges like time synchronization.

6 Evaluation

This section demonstrates that our two proposed techniques,
dynamic buffer resizing and explicit circuit state feedback,
overcome the challenge of bandwidth fluctuation in RDCNs
and enable TCP to take advantage of high-bandwidth circuits
when they become available. Additionally, we demonstrate
that dynamic buffer resizing provides a general benefit to
many TCP variants (beyond CUBIC).

6.1 Evaluating Dynamic Buffer Resizing

To test the efficacy of dynamic in-network buffer resizing, we
repeat the experiments from Section 5.1, but with dynamic
instead of static ToR VOQs. Using the schedule and workload
described in Section 4.5, we configure the hosts to run TCP
CUBIC and vary how early buffer resizing takes place, τ,
from 0 µs to 3000 µs, in intervals of 300 µs. Buffers switch
between a short capacity of 16 packets and a large capacity
of 50 packets. Figure 9a shows average circuit utilization for
the various τ. The earlier we resize, the higher utilization
flows achieve. With τ = 1800 µs, circuit utilization increases
by 1.87× (48.6% → 91.1%), compared to 16-packet static
queues.

Figure 9b shows a graph of the expected TCP sequence
number and the VOQ length during the lead-up to a circuit

day, for selected τ. VOQ length hovers at the small buffer
size until dynamic buffering takes effect, then grows steadily,
and finally drains sharply when the higher bandwidth circuit
activates. For situations that see high utilization, sufficiently
many ACKs return and ramp up the sending rate before the
VOQs drain completely, which, for TCP CUBIC, is effectively
achieved at τ = 1800 µs.

The queue length required for high utilization is a function
of the BDPs of the packet (10 Gb/s×2×5 µs = 100 Kb) and
circuit (80 Gb/s× 30 µs = 2.4 Mb) networks. These BDPs
differ by ∼32 9000 B packets. Assuming a few extra packets
due to store-and-forward delays, between 35 and 40 packets
must be in the VOQs before circuit start to keep the network
fully utilized. The matches the growth of the VOQ line for
τ = 1800 µs (91% utilization) in Figure 9b.

The remaining question is whether this high utilization
comes at the cost of high latency, as it did for static buffers.
Median latency does not increase until τ = 2700 µs; we omit
the results for brevity. Figure 9c shows how dynamic resiz-
ing affects 99th percentile tail latency. Tail latency depends
on the length of the VOQs, which increases with the pre-
buffering duration. The 1.87× circuit utilization increase is
paired with a tail latency growth of 2.33× (123 µs→ 286 µs).
These results can be compared to static VOQs in two ways:
(1) Comparing τ = 1800 µs to a static buffer with similar
throughput (64 packets), dynamic buffering improves tail la-
tency by 0.59× (484 µs→ 286 µs); (2) Comparing to a static
buffer with similar tail latency (32 packets), the circuit utiliza-
tion increases by 1.19× (76.7%→ 91.1%). Ultimately, this
experiment demonstrates that dynamic buffer resizing has the
potential to meet our goal of achieving full circuit utilization
with less of an impact on latency than large static buffers, but
its latency penalty, especially at the tail, is still unreasonably
high for distributed applications.

Given that resizing provides large buffers to flows for a
significant amount of time (e.g., 41% of the schedule for
τ = 1800 µs) it is surprising that tail latency is not as bad as
static buffers for comparable circuit utilization. We can use
large buffers for a large fraction of time because when circuits
are torn down and flows transition back to the packet network,
the resulting bandwidth reduction (8× in these experiments)
causes TCP to dramatically scale back its sending rate at
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Figure 11: reTCP achieves high utilization with much lower tail latency than dynamic buffers alone.

the same moment when the VOQs shrink. In effect, switch-
ing back to the packet network resets TCP and the networks
experiences a period of short queues while TCP recovers.

However, a 2.33× tail latency increase is unacceptable for
many latency-sensitive applications. We have not yet met our
goal of achieving the “best of both worlds” of high through-
put without the corresponding latency penalty. Section 6.3
demonstrates how reTCP completes the picture, achieving
high utilization with only a 1.20× tail latency increase.

6.2 Benefits for all TCP Variants
In Section 3.2.4, we demonstrated that the problem of band-
width fluctuation impacts many TCP variants we tested. Re-
turning to the experiment in Figure 4, we evaluate the variants’
performance with dynamic buffer resizing, with τ = 1200 µs.
Figure 10 shows the utilization achieved by the 17 variants.
The variants experience an average utilization improvement of
36%, compared to static 16-packet buffers, without any modi-
fications to the end-hosts. Resizing earlier (e.g., τ = 1800 µs)
yields still-higher utilization, but we present τ = 1200 µs to
better illustrate how the TCP variants respond differently.
BBR [5] and TCP NV [3], being delay-based protocols that
seek to keep buffer occupancy low, naturally do not take ad-
vantage of dynamic buffer resizing and realize only 43% and
54% utilization, respectively. Note that DCTCP [1] relies on
explicit congestion feedback from network switches in the
form of a stream of ECN marks set if adding a packet to
a switch queue would cause the queue’s capacity to pass a
threshold. To accurately support DCTCP in the Etalon em-
ulator, we modify the hybrid switch to mark packets in this
way, at 10 packets when using small queues (16 packets) and
31 packets when using large queues (50 packets).

6.3 Evaluating Explicit Network Feedback
Conveying circuit state information to end-hosts provides an
explicit signal that TCP can use to adapt to bandwidth fluctu-
ations in RDCNs. In isolation, reTCP yields higher average
circuit utilization than static buffers alone, with an average
improvement of 2.65% across the static buffer capacities in
Figure 8a. An improvement of 6% with 32-packet buffers

is the most significant. For 64 and 128–packet queues, both
static buffers and reTCP achieve full utilization. We omit the
graphs for brevity.

When used in combination with dynamic buffer resizing,
reTCP achieves high circuit utilization with a shorter pre-
buffering duration and, in turn, lower tail latency. Figure 11
repeats the experiments from Section 6.1, but with both dy-
namic buffer resizing and reTCP, and instead varies τ from
0 µs to 300 µs, in intervals of 50 µs. Note that the x-axis
range in Figure 11b is different than in Figure 9b to better
visualize the range of τ values during which reTCP ramps
up. Figure 11a shows that the two techniques working to-
gether achieve a 1.91× (48.7%→ 92.7%) circuit utilization
improvement compared to 16-packet static buffers, but with
lower τ than dynamic buffers alone: at τ = 150 µs instead of
τ = 1800 µs. The impact of this order-of-magnitude decrease
in prebuffering duration manifests itself in lower tail latency
in Figure 11c: an only 1.20× increase (123 µs → 147 µs),
compared to 2.33× for dynamic buffer resizing alone.

Comparing Figures 9b and 11b, the steady VOQ growth is
replaced by a jump as cwnd doubles, sending more packets
into the network. At τ = 150 µs, the sender injects sufficiently
many packets to grow the VOQ large enough to saturate the
higher BDP of the circuit network, when it becomes active.
The rate of growth is quick: It keeps the required prebuffering
duration short, which reduces tail latency. Overall, dynamic
buffer resizing and reTCP overcome the challenge of band-
width fluctuation in RDCNs, increasing circuit utilization by
1.91× with an only 1.20× tail latency penalty.

6.4 Limitations

Increasing the VOQ size does not, on its own, lead to higher
circuit utilization. The TCP sender must ramp up to fill the
additional capacity. Section 6.1 shows that this ramp-up may
take milliseconds, posing a challenge for schedules that allo-
cate circuits between some rack pairs frequently: The circuit
downtime period may be too short to support this lengthy
ramp-up. E.g., the time between circuits for a 3-rack cluster
with a strobe schedule (week length = 400 µs) is 220 µs, far
lower than the τ = 1800 µs deemed necessary by Section 6.1.
Investigating this case revealed that as the prebuffer start time
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approaches the end of the previous circuit, the residual high
sending rate quickly fills the VOQs, causing the network to
enter a mode similar to using large static buffers, with high
tail latency. reTCP ameliorates this problem.

7 Related Work

Research into RDCN design [6,16,20,25,26,32,38,47,51,57]
and scheduling [2,36,39] has yet to examine TCP-related chal-
lenges for modern RDCNs. c-Through [51] proposes resizing
end-host network buffers, but for the purpose of traffic batch-
ing, which is necessary to ensure that senders have enough
data to fill a circuit when it becomes available. This is only
an issue for circuits with long (e.g., millisecond-scale) upti-
mes, not the microsecond-scale technologies we address in
this paper. Other work avoids the bandwidth fluctuation prob-
lem by segregating traffic to use either the packet or circuit
networks exclusively [16, 38]. Our techniques simplify the
network design by not segregating traffic.

Many of the TCP variants in Section 3.2 are tailored for
high-bandwidth networks, but they assume that the bandwidth
does not change on short timescales. Prior work [52] has ex-
amined how TCP reacts to bandwidth fluctuations in wireless
networks, but these networks are fundamentally different than
RDCNs. Wireless networks have lower bandwidths and BDPs
than RDCNs, and unlike in wireless networks, bandwidth
fluctuations in RDCNs are not random: They are part of a
schedule that is known in advance. This insight enables proac-
tive techniques like dynamic VOQ resizing.

8 Conclusion

With new advances in RDCN technology comes the need to
reexamine the protocols running on top of these networks.
This paper proposes two techniques to adapt TCP to the rapid
bandwidth fluctuation inherent in microsecond-scale recon-
figurable datacenter networks: 1) In the network, we transpar-
ently resize ToR VOQ buffers prior to circuit activation to help
TCP ramp up, but at the cost of higher tail latency; 2) Involv-
ing the end-hosts opens the door for high utilization without a
latency penalty by incorporating explicit circuit state signals
sent from the hybrid switch. Etalon provides opportunities for
future work, e.g., exploring multicast-enabled optical circuit
switching (e.g., Blast [53]), providing a cross-cutting evalua-
tion of different RDCN designs, and investigating challenges
in future sub-µs RDCNs. While this paper focuses on TCP
specifically, our investigation into implicit and explicit tech-
niques for adapting the sending rate to the state of the network
applies to congestion control in general. We believe that our
experiences speak to the need for an end-to-end evaluation of
future RDCN designs.
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