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Abstract— The growing use of service robots in dynamic
environments requires flexible management of on-board com-
pute resources to optimize the performance of diverse tasks
such as navigation, localization, and perception. Current robot
deployments often rely on static OS configurations and system
over-provisioning. However, they are suboptimal because they
ignore variations in resource usage, leading to system-wide
issues like robot instability or inefficient resource utilization.
This paper presents ConrFicBort, a novel system designed to
adaptively reconfigure robot applications to meet a predefined
performance specification by leveraging runtime profiling and
automated configuration tuning. Through experiments on mul-
tiple real robots, each running a different stack with diverse
performance requirements, which could be context-dependent,
we illustrate ConrFicBor’s efficacy in maintaining system stabil-
ity and optimizing resource allocation. Our findings highlight
the promise of automatic system configuration tuning for robot
deployments, including adaptation to dynamic changes. Code
available at: https://github.com/ldos-project/configbot

I. INTRODUCTION

Service robots are increasingly being used to assist hu-
mans in everyday tasks, with commercial examples including
Amazon Astro, EEVE Willow, and Misty the Robot. Cur-
rently, these robots rely on vendor-programmed functions,
but we believe that future extensibility through third-party
applications will unlock diverse capabilities - much like
app stores (e.g. Google Play Store) did for smartphones.
Furthermore, the set of actively running apps can change
dynamically—whether through user-driven actions like start-
ing or stopping functionality, installation/removal of apps, or
robot personalization per user [1], [2], thereby significantly
expanding the range of workloads supported on a given robot.

Real-time responsiveness is crucial for robot apps, as
delays or outdated data can hamper effective functionality
in dynamic environments (§1V-A). Ensuring that numerous
concurrently running and dynamically changing sets of apps
can effectively share the computational resources on robots
while meeting their real-time goals is thus an important
resource allocation problem. Most consumer-grade robots are
inherently resource-constrained, meaning they cannot simply
scale resources on demand—unlike cloud servers—to meet
apps’ performance needs. This makes the resource allocation
problem in robots particularly challenging.

Robot apps’ distinct attributes further add to the chal-
lenge (§III-B). First, robot apps have highly diverse re-
source requirements, performance targets, and service level
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objectives (SLOs). Second, robot apps operate in various
environments—such as homes, workplaces, and outdoor set-
tings—where resource demands vary significantly due to
environmental variations. Third, robots frequently adapt their
algorithms based on the environment [3], adding to resource
demand volatility.

Modern operating systems (OSes)—particularly the Linux
variants widely used in robotics—fail to account for these
context-specific app resource needs due to reliance on simple
resource allocation heuristics. A potential workaround is to
over-provision resources and manually set static allocations
for each app such that it performs adequately across all
contexts; however, this is impractical on resource-constrained
systems.

To address these challenges, we introduce ConrFigBorT, a
novel resource allocation framework for service robots that
automatically tailors app resource allocations to dynamic
contexts by building on three unique opportunities that derive
from properties of robot apps, as described next.

First, robot apps involve persistent, long-running tasks
like object tracking and sensor processing [4]. Thus, Con-
FIGBoT optimizes resource allocation infrequently targeting
stable environments with consistent workloads, and relies on
lightweight runtime monitoring to detect significant environ-
mental or workload changes. Further, CoNnFiGBoT maintains
a library of proven configurations linked to specific envi-
ronments and quickly reapplies them in familiar contexts,
ensuring efficiency with minimal overhead.

Second, robot functionality can be divided into core ser-
vices (e.g. localization, navigation) and non-core apps. Build-
ing on this, ConrFicBot formulates resource allocation as
an optimization problem, treating core service performance
as constraints and non-core app performance as objectives.
This reduces decision variables by limiting essential service
tuning, and simplifying optimization.

Third, many robot apps operate in a data-driven manner,
performing computations only when new data arrives. Coarse
resource limits (e.g. setting max CPU usage limits) can
trigger adverse effects (§IV-C) that degrade the performance
of the throttled process needlessly. ConrigBor controls data
flows — particularly for non-core apps — via the novel
adaptor abstraction (§V), gracefully reducing computational
demand under resource constraints without disrupting critical
functions.

ConricBort uses Bayesian Optimization to tune the values
of OS-based system-level (cgroup) settings, as well as
the thresholds for the proposed ROS-layer adaptors to meet
a developer-defined specification of desired robot behavior.


https://github.com/ldos-project/configbot

TABLE I: Common robot apps: typical resource needs, execution frequency and performance metrics

Application Frequency  Resources Used Performance Metrics # of topics
published to subscribed to
LiDAR processing 40 - 60 Hz /O, CPU Latency, Density 12 2
Navigation 20 - 40 Hz CPU, GPU No collisions, smooth movements 25 18
Localization 30-40Hz CPU Accuracy, Recovery 4 5
Web dashboard 10 Hz Network Latency/delay, throughput 3 12
Object detection 1-5 Hz CPU, GPU Frame rate, detection accuracy 2 2

Once deployed, ConriGBoT learns a configuration for the
current workload + context that meets the specification and
applies this identified configuration to the system — without
requiring code changes to the robot apps/services. We also
discuss how ConricBot monitors for context shifts that
could invalidate prior configurations and re-optimizes for
new workloads and environments automatically.

We evaluate ConriGBoT on state-of-the-art robot plat-
forms, and illustrate how configurations our system identified
allowed a navigation and obstacle-avoidance system on the
Boston Dynamics Spot to run on 4x fewer CPUs while
still meeting developer-specified performance requirements
(§VIII-A). We then show that our solution generalizes to
multiple sets of robot apps (§VIII-B), varying environments
(§VIII-D) and other robots (§VIII-E).

II. RELATED WORK

Automated config search. Automated config search has
been successful at making web servers [5], [6], databases [7],
and cloud apps [8] more efficient. They use bayesian opti-
mization [5], bandit algorithms [8], causal inference [6] or
combinations of these techniques [9] to tune config knobs.
Cherrypick [5], for instance, uses bayesian optimization to
efficiently identify the optimal cloud configuration (i.e., VM
type, number of CPUs, etc) for big data analytics jobs. To
the best of our knowledge, robot OS tuning via automated
config search has not been attempted so far.

Context-dependent navigation. Most work in this area
primarily focuses on getting a set of "good" parameters under
different environments. APPLD [3] uses labeled contexts
(i.e., environments) to train a supervised classifier that se-
lects a context-conditioned behavior cloning policy. Another
work [10] tries to dynamically find trajectory optimization
weights for a Dynamic Window Approach (DWA) planner
for straight-line and U-turn contexts. However, none of the
aforementioned works detect workload changes automatically
as they do not profile the system, and so they need a way to
classify the contexts a priori.

III. BACKGROUND

In this section, we describe modern robot hardware (§III-
A) and key attributes of robot apps (§III-B), setting the
stage for the resource management challenges discussed
subsequently.

A. Robot Hardware & Compute

Service robots vary in form (e.g., wheeled, quadruped,
humanoid) and feature diverse hardware configurations suited
to their environments. Most rely on resource-constrained
embedded systems, making efficient resource allocation crit-
ical for performance across workloads. Typically, robots
are equipped with (1) LiDAR or depth cameras for 3D
perception and (2) an inertial measurement unit for odometry
and orientation, both essential for navigation and obsta-
cle avoidance. Some also have monocular or stereo RGB
cameras. Additional hardware may be used depending on
the application, such as tactile sensors for terrain-aware
navigation [11] or network cards for server communication
and remote processing [4], [12].

Our framework’s design and evaluation target multiple
robot platforms, further detailed in §VII.

B. Characteristics of Robot Applications

Robot apps are typically built using ROS, in which func-
tionality is implemented in multiple nodes, each of which
is a separate Linux process. Nodes communicate via topics,
a message-passing system that enables publishing and sub-
scribing to named queues. Robots run a “stack"—a cohesive
set of ROS apps—continuously to perform their tasks.

Fig. 1 illustrates the structure of a Basic-NAV stack,
which we use as a running example. This stack consists
of five apps, communicating through publisher-consumer
dependencies. While simplified in the figure, each node is
highly complex. For example, the ‘“navigation algorithm”
node—one part of the navigation app—publishes to 21
topics, subscribes to 16, and employs a worker thread pool
for concurrent computation.

Beyond this complexity, robot apps have unique character-
istics that complicate resource allocation:

« Diverse resource demands and execution needs: As
shown in Table I, robot apps vary widely in resource
usage, execution rates, and performance requirements.
Some rely mainly on CPUs (e.g., localization), others
on GPUs (e.g., object detection), and some on both
(e.g., navigation). Additional resources like networking
(e.g., web dashboards) or I/O (e.g., LIDAR) may also be
critical. Execution rates differ significantly: navigation
runs at 20-40Hz, while object detection operates 4—40x
slower. Unlike traditional workloads (e.g., databases,
cloud computing), robot applications exhibit extreme
resource heterogeneity, often coexisting on the same
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Fig. 1: Basic-NAV stack. A stack (i.e., set of robot apps) w/
sensor processing, navigation, and telemetry [12]. Navigation
is a core service and produces two outputs: (a) command
velocity for actuators and (b) a goal image showing the
projected path for monitoring/debugging. The minimum safe
update rate required for (a) is 35Hz (developer-specified).
All communication (arrows) is via ROS topics; topic names
omitted for cross-app flows (dashed arrows) for brevity.

TABLE II: Resource usage of NAV algorithms (§VII).

Algorithm Compute Memory
Basic-NAV (Fig 1) 1.1 CPUs 526 MB
INTERMED-NAV 1.5 CPUs 490 MB
TERRAIN-NAV 6.9 CPUs, GPU 1267 MB

machine. Cloud schedulers typically consolidate homo-
geneous workloads [13], [14] onto the same machine.
o Implicit environment dependencies: A robot’s phys-
ical environment greatly influences resource consump-
tion. Tasks like pose estimation [15], [16] and object
tracking [17] involve multi-stage pipelines—first detect-
ing objects, then estimating poses—leading to higher
compute costs in dynamic or crowded settings. Simi-
larly, telemetry systems [18] compress static scenes effi-
ciently but generate larger, compute-intensive streams in
dynamic environments [19], [20]. Thus, static resource
allocations are ineffective; efficient management re-
quires continuous adaptation to environmental changes.
« Environment-adaptive algorithm selection: Robot de-
velopers often choose algorithms based on environ-
mental context, further amplifying resource variability.
For instance, social navigation [21] may be necessary
in crowded indoor spaces, while terrain-aware algo-
rithms [11] are better suited for outdoor environments.
Algorithm selection can also occur dynamically at run-
time [22]. Table II highlights how resource usage for
the “same” navigation task varies based on algorithm.
Resource allocation must not only be workload-specific
but also dynamically adapt to environmental shifts.

IV. RESOURCE ALLOCATION IN MODERN ROBOTS

Allocating a robot’s compute resources to applications is
handled by the underlying operating system (i.e., Linux in
ROS-based robots), which has multiple subsystems (CPU,

TABLE III: Performance issues in resource-constrained
robots
Robot Observed degradation in functionality
@ Spot Stumbling, inability to stabilize at destina-
tion, intermittent pauses during navigation.
(2) Jackal Collisions with obstacles

@ Cobot

Delays, jerkiness in manipulating objects.

I/0, network, etc.) that coordinate resource-sharing via
heuristics (e.g., the "completely fair scheduler”" [23] for CPU
scheduling). Unfortunately, these default resource schedulers
often lead to degraded robot performance (§IV-A) since they
prioritize broad objectives (e.g., fairness), which conflict with
the complex, interdependent and environment-dependent na-
ture of robot stacks and their execution (§1II). Linux allows
configurability of these schedulers through cgroups, which
enable fine-grained CPU allocation through resource limits
and priorities at a per-process level. While cgroups can im-
prove performance by tailoring resource allocation (§IV-B),
we find that they alone cannot fully address all performance
issues in robot apps (§IV-C). We present and argue for the
abstraction of configurable adaptors (§V), which modulate
data flows between ROS nodes serving as important knobs
for performance and stability.

A. Default OS configurations frequently lead to performance
degradation in resource-constrained robots

We study the performance offered by the default OS
configuration when running (i) Basic-NAV (Fig 1) and (ii)
Basic-NAV along with an object detection (0bj) applica-
tion [24] on the Boston Dynamics Spot robot.

Figure 2a shows how frequently new navigation decisions
are sent to the actuators in settings with varying resource
constraints. In a resource-rich system, without any memory
or compute limits, Basic-NAV was designed to update these
command velocities at 35-40 Hz, a condition that is even
close to being satisfied only when >4 CPUs are available,
as shown in Fig 2a-i. When we constrain the system to
fewer CPUs (Figs 2a-iii, 2a-iv) or introduce an additional
app (Fig 2a-ii), we observe that the default OS configurations
cause the frequency of updates to fall by up to a factor of 3 x.
In particular, the reduced frequency of execution of the core
app leads to degraded robot performance, resulting in end-
to-end failures summarized in Table III. Here, the default OS
configurations do a poor job of allocating resources that are
available across running jobs, inducing destructive inter-app
contention which we show below is avoidable.

B. cgroup settings can help core app performance

Control groups (cgroups) are a core feature of Linux
enabling fine-grained resource management. They allow ad-
ministrators to define CPU, memory, and I/O usage limits
and priorities for processes, which the kernel’s scheduling
mechanisms enforce at runtime. The cpu.max controller,
in particular, allows setting the maximum fraction of CPU
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Fig. 2: Impact of resource constraints

time that can be allotted to a process over a time window.
cgroups can form a useful mechanism to mitigate appli-
cation contention in the previous section.

For instance, the performance degradation seen in Fig 2a-
(ii) could trivially be solved by starving the object detection
app. In practice, robot developers today manually identify
an appropriate cpu.max limit for the new app, ensuring
it does not overuse resources, through a combination of
trial and error and intuition. As workloads and environments
change, these static allocations require frequent reconfigura-
tion, which is challenging once the robot has been deployed
to run in the real-world. We will see in §VIII-B that Con-
FIGBOT can automatically set cgroup settings to improve
performance only up to a certain extent.

C. cgroups on their own are not sufficient

Unfortunately, as we show next, relying solely on CPU
throttling via cgroups leads to suboptimal system behavior.

Internal contention within apps. To illustrate the limita-
tions of cgroups, consider the Basic-Nav stack (Fig 1).
Some parts of the navigation app, which process LiDAR data
and compute the navigation command to send down to actua-
tors (Task 1), are clearly core parts of the stack. However, the
same app also overlays the planned path on an image from
the camera (“Goal Image” in Fig. 1) for monitoring, logging
and debugging (Task 2) - useful but non-core functionality.
In resource-constrained environments, Task 2 can degrade
Task 1 by competing for the same compute resources.

Shared worker pools. In the above example, we would
ideally deprioritize threads handling Task 2 to ensure
Task 1 remains unaffected. However, this is challenging
because both tasks share a single thread pool: the same
thread may serve either task, depending on when data
arrives. This scheduling behavior is typical in C++
ROS applications using ros::AsyncSpinner (or

rclcpp::executors::MultiThreadedExecutor
in ROS2), which dispatches callbacks across a set of
threads. A similar issue arises in Python nodes relying
on rospy.spin(), commonly used to implement
multithreaded callbacks. Both APIs serve as the de facto
approach for implementing the perpetual event loop in ROS,
making them ubiquitous in robot apps.

Oversubscription under throttling. A cgroup-based con-
troller for the Basic-Nav+obj stack might reduce CPU
shares for the object detection (a non-core) app whenever
a core app is at risk. Object detection is a multithreaded
app that uses a thread-pool of workers to process images;
restricting the CPU usage of a multithreaded app can trigger
a surge in parallel tasks, causing severe performance drops.
As shown in Figure 2b, lowering the object detection app’s
CPUs from 4 to 1 and then 0.5 drastically increases the
number of active threads (capped at 10), raising image-
processing latency beyond two seconds per frame. This
occurs because each incoming image spawns a new thread.
Under tighter CPU constraints, multiple threads remain active
simultaneously, contending for an ever-diminishing resource
pool and compounding the performance penalty.

In both the examples in this section, direct control over
data flows could be used to diminish these performance
penalties. In the shared worker pool case, for instance, we
could throttle the number of images being sent to Task
2 — the lesser images received by Task 2, the lesser its’
compute footprint. Similarly, in the oversubscription exam-
ple, throttling the number of incoming images could help
prevent the compounding penalties. Adaptors, described in
the next section, are an abstraction we built to modulate data
flows such as these in a transparent way (i.e. not requiring
application code changes).

V. THROTTLING DATA FLOWS TO CONTROL RESOURCE USAGE

Adaptors (Fig. 3) offer a finer-grained resource control
mechanism. In the above example scenario, adaptors can
“intercept” camera data on a per-subscriber basis, throttling
(i.e. dropping data) only the problematic paths without pe-
nalizing everyone else. Adaptors thus enable ROS to manage
data flows within and across apps and achieve more nuanced
resource control than cgroups alone can provide. Adaptors
are inserted on each subscription edge and they control the
frequency and volume of messages passed to each consumer.
Both attributes can be dynamically reconfigured at runtime
to shape the resource usage pattern of the consumer. We
integrate adaptors into the ros_comm library, a core ROS
component responsible for communication, by modifying
the subscriber API to enable message filtering. Adaptors
are automatically setup when an app running on our mod-
ified ROS build calls rospy.Subscriber (Python) or
nh.subscribe (C++). Each adaptor also has a dedicated
ROS service associated with it, allowing dynamic adjustment
of its filtering frequency at runtime. Our implementation
required only ~ 150 lines of code across the C++ and Python
implementations of ros_comm.
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Fig. 3: In traditional ROS message passing, every consumer
receives all messages published to the topic (i.e. n =n; =
ny). Our custom ROS build places adaptors (&) on each
subscription edge, enabling independent rate control per-
consumer.

The problems we described in §IV-C can be fixed by
changing the application code itself; for example, a developer
could create separate worker pools for each independent
task in the node, or split out the node into multiple nodes.
However, these approaches are intrusive, forcing developers
to re-architect their apps. Adaptors, by contrast, offer an
application-transparent, drop-in solution. We will show in
§VIII-A and §VIII-B that the addition of adaptors allows
ConrigBort to unlock higher performance over a CoNnFiGBoT-
like approach that uses only cgroups.

VI. ConricBot DEsIGN

The previous section demonstrated how resource con-
straints degrade robot stacks (§IV-A), and how carefully tun-
ing CPU limits (§1V-B) or inserting adaptors (§V) can restore
performance. However, deciding precisely which cgroup
parameters or adaptor rates to apply remains challenging,
often requiring expert insight into application dependencies
and resource demands and painstaking and error-prone man-
uval tuning. Even after identifying the best configuration, we
will show (§VIII-C) that almost any change in the workload
renders the existing configuration suboptimal for the new sce-
nario. CoNFIGBoT, which can automatically pinpoint “good”
configurations for complex app mixtures running on a robot
at any given time and environment is proposed as a solution
to this challenge.

A. Problem Definition

Consider a robot stack (i.e., the set of apps ai, aa, ...,
ay) operating under specified conditions, which include both
system resources and the physical environment. For each app,
we assume the developer provides a performance metric (J;)
to evaluate its behavior (e.g., frame rate, message publish
frequency) and a desirable target value J?. Achieving this
target ensures the robot operates effectively. This assumption
is reasonable, as such metrics are often easy to define.

As mentioned earlier, we categorize robot apps into two
classes:

o Core services (A.): Critical for the robot’s functionality
(e.g., localization, navigation, obstacle avoidance) and
must always perform reliably.

« Non-core apps (A,): Non-essential and can be executed
opportunistically when resources permit.

Armed with this categorization, we can specify the task of
identifying an optimal configuration as a constrained black-
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a specification — SPEC) for new contexts and performs
runtime monitoring to identify when relearning is needed.

box multi-objective optimization problem:
argmaxmin(J;(c),J?) Va; €A,
Cc

s.t. Ji(e) > J? Va; € Ac
c € C i.e., config knobs space

where c is one specific configuration of the operating system
(i.e. values for cgroups) and for adaptors from the entire
possible configuration space (C).

The above defines an optimization problem over C with
|An| objectives and |A.| constraints, with the full solution
existing on a Pareto front. The min operator enforces an
upper bound on performance for each application, ensuring
that once an app reaches its target, additional resources are
not wasted on it. For apps without a strict target, this bound is
effectively set to co. When no configuration that satisfies the
constraints for the core apps (A.), the optimization process
outputs UNSAT, indicating none of the explored configura-
tions are feasible, meaning that the robot developer has to
either relax their constraints or provision more resource.

B. The ConricBor Approach

Figure 4 outlines our framework with details provided next.

Specification and configuration space. The robot developer
begins by defining performance metrics (J(c)) for their apps,
along with desirable target values (J°) for each. For example,
the developer might say that the navigation should run at a
frequency (i.e., J(c)) of more than 35 Hz (i.e., J°). These
specifications form the basis of the optimization problem.
Our system then populates a list of available config knobs
— we place each ROS node in a separate cgroup, allowing
our system to control the cpu.max allocations for nodes
independently. Additionally, we place adaptors on topics that
(A) have high volumes of messages (i.e. > 5 Hz), and
(B) that involve a non-core app either as a publisher or
subscriber. We do this for for practical reasons (i.e. cut
down on the number of config knobs to tune); without
these conditions (A) and (B) in place even the Basic-NAV
stack (Fig 1) would have 50+ adaptors making optimization
unwieldy. This design choice is justified, as the primary goal
of adaptors is to limit excessive resource usage by large data
flows involving non-core apps.



Initial learning. Using the provided specifications, CONFIG-
Bot models the requirements of core services as constraints
and those of non-core apps as optimization objectives. As
shown in the left half of Fig 4, ConrigBort leverages
Bayesian optimization, well-suited for efficiently exploring
configurations in high-dimensional, black-box scenarios. The
optimization algorithm samples the config space (C) to
identify a config (C) that is applied to the system; we then
profile the performance of our objectives and constraints
under C for a brief amount of time (5s), after which we
pass these observations to the optimizer; the optimizer uses
this information to suggest a new point C'. This iterative
process outputs the best config identified Cp,,; (or UNSAT
if no solutions are found).

Online monitoring and relearning. The right half of Fig. 4
illustrates the online monitoring process after a suitable
configuration is identified and applied. ConFiGBoT uses a
three-layer monitoring system including: (a) an eBPF [25]
monitor that runs continuously, (b) a rosmaster-based
monitor that wakes up every 30 seconds, and (c) a lightweight
constraint monitor that continuously checks if the developer
defined-spec is being met. More details are discussed through
an illustration in the results section VIII-D. The eBPF and
rosmaster-based monitors detect new processes and ROS
nodes respectively, and raise warning flags before constraint
violations are detected by the constraint monitor.

Optimizations. To minimize downtime during retraining,
ConriGBor maintains a configuration library, mapping op-
erational contexts (e.g. current location coordinates, list of
apps) to optimal configurations, enabling rapid reuse of
known good configs; a design pattern that other robot systems
use as well [3]. When immediate retraining is not feasible
(e.g. the robot is executing a critical task and cannot pause),
we defer retraining by logging a trace of the current inputs
(capturing sensor inputs via rosbag) and applying quick
remediation by terminating non-core apps and reallocating
their CPU shares to core services.

VII. IMPLEMENTATION

Robots. We implement ConrigBort on three different robots:
(a) Spot: Boston Dynamics Spot w/ NVIDIA AGX Orin,
(b) JackaL: Clearpath Jackal w/ Intel i7 (8 cores), and (c)
Cosot: a mobile navigation base w/ Kinova arm, Intel NUC
10 (no GPU). We primarily use Spor for evaluating CoNFIG-
Bor, though we also show that it generalizes effectively to
other robots.

Stacks. We evaluate ConrFigBot on six different sets of stacks
across the three robots. For Spot, we have (i) Basic, which
uses standard DWA based local planner for obstacle avoid-
ance, and a carrot-based high level planner, (ii) INTERMED,
which adds an additional layer of discretized A-star grid-
based planning in between the two layers described in Basic,
and (iii) TERRAIN, that uses the terrain-aware navigation
stack [11]. For CoBor, we have CoNAv which is similar to
Basic but adapted for Cosot, and CoMAP, a manipulation
stack based on top of Kinova Kortex API. For Jackar,

Fig. 5: Robots we use: Spot, Cobot, and Jackal (left to right).

we use PHOENIX which is Army Research Laboratory’s
navigation stack [26]. In addition, we use these non-core
apps: web dashboard (web) [12], object detection (0bj) [24],
segmentation (Segment) and pose estimation (pose) [27].

VIII. EvALUATION
In this section, we show:

« A walkthrough of ConriGBoTt's learning process on
Basic, illustrating how it discovers configurations that
outperform default configurations, even when the default
OS is equipped with 4x more resources (§ VIII-A)

o Results on Spot demonstrating ConrFiGBot identifies
good configurations for multiple robot stacks (§VIII-B)

o Demonstration of how the optimal configuration for one
set of apps doesn’t work for others (§VIII-C)

o Illustration of how ConrigBot handles runtime moni-
toring and retraining (§VIII-D)

« ConrigBoT's generality to other robots (§VIII-E)
Metrics. We measure performance using two metrics: for
core services, the constraint satisfaction rate measures the
proportion of time in which all constraints are satisfied —
ideally, we would want this to be 100%; for non-core apps,
we use the developer-specified performance of non-core app
to compare configs. For both these metrics, higher values are
better, although a high non-core performance at the cost of
a lower-satisfaction rate is undesirable.

Comparisons. We compare the performance of the Con-
FiGBoT-tuned configs with (a) the default config and (b)
ConriGcBor-cg, i.e. a ConrFicBot without adaptors (tunes
only cgroup settings), to quantify the relative improvements
caused by adaptors.

A. ConriGBor: learning a config for Basic on Spot

Table IV below summarizes the configurations identified
by ConrigBor, the satisfaction rate of those configs, and the
non-core performance. CoNriGBoT performs nearly 3 x better
than the default config, while maintaining a near-perfect
satisfaction rate. In fact, the default config fails to outperform
the ConrFiGBot-tuned config on constraint satisfaction rate,
even when we provide the default with 4x more CPUs.

Fig 6 plots the optimization progress of ConNFiGBoT as
it identifies the config in Table IV. In Fig 6, each point
corresponds to one configuration tested by the optimizer; a
red cross indicates that config fails to satsify the core service
constraint. The optimizer chooses the highest performing



TABLE IV: ConrigBot on Basic with web

Core (%CS) Non-core (Hz)

ConricBot 99.42% 9.90
ConriGgBor-cg 93.76% 1.97
Default 0.00% 3.22
Default (4x CPUs) 84.94% 29.53

(a) ConfigBo
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o

——Best configuration
------ Current configuration
e NAV constraint satisfied
NAV constraint violated
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Opt. Objective

o

0 10 20 30
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Fig. 6: Optimizing Basic with ConrFigBoT on Spot

blue-dot (i.e. constraints satsified) as the best config; the
green solid line tracks the best config identified so far.

The constraint satisfaction rate is a binary metric - which
tells us if a config satisfies the constraint, or doesn’t; it
doesn’t inform us on how close it was to satisfying the
constraint threshold. Fig 7 plots a histogram of the core
services’ performance and shows that the default config
(10 — 15Hz) is far from the developer-defined performance
constraint (35Hz).

B. Benchmarking CoNnFIGBOT performance on Spot

Table V summarizes the performance of ConricBorin op-
timizing three different navigation stacks on Spot, while an
additional resource-hungry non-core app (obJj) is running.
The number in (parentheses) represents the performance of
the non-core app (obj) and %ages are satisfaction rates.

Table V illustrates how ConricBoT's config has a near
100% satisfaction rate for all three stacks while being able

Constraint satisfaction of various configs
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Fig. 7: Histogram: performance of core-services

TABLE V: Performance of NAV stack with oBjJ.

Basic INTERMED TERRAIN
ConricBot 100% (2.12) 100% (1.79) 96.0% (1.35)
ConricBor-cg  100% (1.78)  100% (1.71)  100% (0.70)
Default 22.4% (1.45)  0.0% (1.20) 0.4% (0.46)
Random-1 99.3% (0.62)  0.0% (0.62)  99.4% (0.56)
Random-2 35.0% (1.04)  0.0% (0.95) 24.9% (1.04)
Random-3 86.9% (1.31) 60.2% (1.61) 39.2% (0.80)

to perform between 49% (for INTERMED) to 193% (for
TERRAIN) better on the non-core tasks, when compared
against default. Additionally, the addition of adaptors al-
lows ConriGgBor to discover configs that have as much as
92% (TERRAIN) better performance on non-core apps when
compared against ConFiGBoT-Cg. In addition to the usual
comparisions, Table V also includes three randomly chosen
configurations sampled uniformly at random from the config
space — none of these configs preserved high constraint
satisfaction while maximizing non-core performance to the
extent ConrigBoT-tuned configs were able to, illustrating the
sparsity of good configs within the config space.

C. Absence of a globally optimal config

Throughout this paper, we have been alluding to the ben-
efits of constantly learning and relearning configurations for
each new context. To illustrate the importance of relearning,
we attempt to see if there exists an optimal config that works
across all three of our stacks. Intuitively, a config we learn for
a more-resource intensive core service (e.g. TERRAIN) should
perhaps work well on simpler apps (e.g. BAsic, INTERMED).

Table VI evaluates the best config we identified for each
app (e.g. TERRAIN,) on the other two apps (e.g. Basic). We
find that there is a clear one-one correspondence between
the highest performing config on each stack. Specifically, the
optimal config learned from Basic performs better on Basic
than on TERRAIN, reinforcing the need to relearn configura-
tions for each context, as no single config generalizes well.

TABLE VI: Cross-evaluation of optimal configs on stacks.

Navigation Stack (running on robot)

Config

Basic INTERMED TERRAIN
Basic, 100% (2.12) 85.7% (1.63)  69.2% (1.51)
INTERMED, 100% (1.86) 100% (1.79) 45.31 (1.52)
TERRAIN, 99.4% (1.61)  4.4% (1.38)  96.0% (1.35)

D. Context-dependent relearning

Figure 8 demonstrates a scenario where Spot is initially
navigating an indoor environment with Basic; then, it steps
outdoors and switches to TERRAIN at time ¢ ~ 50s, which
is what it has been programmed to do. ConrigBor is able
to detect this almost instantly through the use of an eBPF
(Extended Berkeley Packet Filter) monitor which enables
low-overhead, in-kernel monitoring of system activity and
can detect new processes even before they initialize ROS
(e.g. before rospy.init () ). Our eBPF monitor dispatches
a wakeup message to our second monitor, a ROS-Python
node that uses the rosmaster API, which would otherwise
check for new nodes every ~ 30 seconds. Due to the
wakeup-call, our rosmaster-based profiling identifies the
new ROS nodes less than 2s after they are initialized; at this
stage, we could either start the reoptimization process (or
reuse a config from the library, if this context has been seen
before); however, for illustrative purposes, we don’t do so,
and wait for constraint violations to accumulate over a period
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Fig. 8: ConrigBort runtime monitoring + relearning

of time before our third trigger (the constraint monitor) starts
the retraining.

E. Generalization to other robots

Table VII summarizes the results of running a completely
different set of stacks on JackaL and Cosot. ConFiGBot
clearly outperforms the Default config, which validates its
general and widespread applicability.

TABLE VII: Performance on Cosot and JACKAL.

Robot Core (non-core) ConrigBor Default

Coor  CoNAV (pose) 100% (0.78) 47.1% (0.45)
Cosor  CoMar (pose) 100% (2.47) 54.3% (1.67)
JackaL  PHOENIX (web) 100% (2.32) 7.2% (6.71)
JackaL  PHOENIX (segment) 98.2% (0.76)  0.0% (0.42)

IX. ConcLusioN AND FUTURE WORK

We presented ConNFIGBOT, an automated configuration
tuning system designed to dynamically reconfigure service
robots to meet predefined performance specs, and demon-
strated it’s ability to maintain system stability across a range
of challenging scenarios. Looking ahead, we identify two
key directions for future work. First, automating the pro-
cess of defining performance specifications remains an open
challenge. Developing methods to infer these specifications
directly from high-level task descriptions could significantly
reduce the burden on developers. Second, while ConFigBoTt
currently reacts to changes in the environment or application
demands, incorporating reinforcement learning (RL) could
enable proactive management of resources. By predicting
potential performance bottlenecks or resource conflicts be-
fore they occur, an RL-driven controller could anticipate
problems and adapt configurations preemptively.
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