
ATRA: Address Translation Redirection Attack gainst
Hardware-based External Monitors

Daehee Jang1, Hojoon Lee1, Minsu Kim1, Daehyeok Kim2, Daegyeong Kim1,
Brent Byunghoon Kang1

1Graduate School of Information Security
2Cyber Security Research Center

KAIST, Daejeon, Korea
{daehee87, hjlee228, pshskms, dhkim7, daegyeong.kim, brentkang}@kaist.ac.kr

ABSTRACT
Hardware-based external monitors have been proposed as a
trustworthy method for protecting the kernel integrity. We
introduce the design and implementation of Address Trans-
lation Redirection Attack (ATRA) that enables complete
evasion of the hardware-based external monitor that an-
chors its trust on a separate processor. ATRA circumvents
the external monitor by redirecting the memory access to
critical kernel objects into a non-monitored region. Despite
the seriousness of the ATRA issue, the address translation
integrity has been assumed in many hardware-based exter-
nal monitors and the possibility of its exploitation has been
suggested yet many considered hypothetical. We explore the
intricate details of ATRA, explain major challenges in real-
izing ATRA in practice, and address them with two types
of ATRA called Memory-bound ATRA and Register-bound
ATRA. Our evaluations with benchmarks show that ATRA
does not introduce a noticeable performance degradation to
the host system, proving practical applicability of the at-
tack to alert the researchers to seriously address ATRA in
designing future external monitors.

1. INTRODUCTION
Kernel rootkit is a severe security threat to a system,

since they are capable of subverting the operating system
itself, compromising kernel objects, hijacking the kernel
control flow by overwriting function pointers, and remain-
ing undetectable from in-host security measures. Prior re-
search efforts to mitigate this can be classified into two cat-
egories based on their root-of-trust: hypervisor-based ap-
proaches [1–6] and hardware-based approaches [7–11]. How-
ever, hypervisor-based approaches are known to have a lim-
itation; since hypervisors are also a software layer, they can
be exposed to software vulnerabilities. Recently, a num-
ber of vulnerability in commodity hypervisors have been re-
ported [12–16]. Also, the monitors impose a burden on top

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA.
ACM 978-1-4503-2957-6/14/11.
http://dx.doi.org/10.1145/2660267.2660303 .

of the overhead of the virtualization itself, as they lever-
age the virtualization functionalities to acquire monitoring
capabilities.

Alternatively, a few hardware-based external monitors
such as [7–11] have recently been introduced. In these ap-
proaches, the kernel integrity monitor runs on an indepen-
dent processor, which is external to the processor that the
monitored host runs on. This architectural isolation guar-
antees that any potential compromise on the monitored host
would not affect the trustworthiness of the execution envi-
ronment for the monitor. Since the monitor does not share
its processor with the host, the monitor code can run as
often as needed, not taking up CPU cycles from the host.

Note that the Intel SMM (Systems Management Mode)
or ARM TrustZone can also provide a trustworthy execution
environment for the monitor code. However, such hardware-
assisted approach shares the same processor with the moni-
tored host, which would entail a context-switching overhead
for mode transition, and the monitor code runs by taking
up CPU cycles on the host processor. The normal opera-
tions on the host must wait until the monitor code yields
the shared processor.

Thus, as shown in recent burgeoning works [8–11], the
hardware-based external monitors are considered as efficient
kernel integrity monitors. However, the current hardware-
based external monitor that runs on an independent proces-
sor is architected not to access the CPU states of the host’s
processor, which allows the adversary to completely evade
the monitoring. Their monitoring schemes are based on the
assumption that the virtual to physical memory mappings
of their targets of monitoring are intact throughout the host
system operation. This assumption exposes monitors to the
critical security threat that allows kernel rootkits to compro-
mise paging data structures and relocate important kernel
objects without incurring visible effects on the virtual mem-
ory address space of the host.

Although hardware-based external monitors can try to de-
fend this attack by additionally observing such data struc-
tures in the physical memory, the attacker can still bypass
this additional effort because hardware-based external mon-
itors cannot observe the CPU states of the host such as con-
trol registers. Despite the gravity of this problem, a number
of studies on external processor-based approaches which do
face this threat either underrated this limitation as hypo-
thetical [8, 11] or seemed not aware of it [9, 10].

In this paper, we present Address Translation Redirection
Attack (ATRA) which can entirely subvert the effectiveness

167

A



of existing hardware-based external monitors. Specifically,
by presenting the design and implementation of ATRA, we
show that it is a practically feasible attack. In order to en-
able ATRA in practice, we found a few challenges including
the following:

• The attack should successfully circumvent hardware-
based external monitors while it manipulates the ad-
dress translation in the target system. By monitoring
additional known memory regions that contain the ker-
nel data structures needed for the address translation,
external monitors can be enhanced to detect ATRA that
touches monitored memory regions.

• The attack should not introduce a noticeable perfor-
mance degradation. Since ATRA modifies some of the
core system functionalities such as the interrupt han-
dling, ATRA could induce a system-wide performance
degradation. Considering that one of the main purpose
of rootkit is to hide the existence from the system ad-
ministrator, a noticeable performance degradation is a
critical issue for the attacker.

We propose two types of ATRA: (i) Memory-bound
ATRA, (ii) Register-bound ATRA to address these chal-
lenges. Memory-bound ATRA relocates important kernel
objects and makes the entire system refer to the copy by at-
tacking the page table data structures of the OS kernel. In
addition, Register-bound ATRA manipulates the page table
related CPU states of the system. In Register-bound ATRA,
we devised a technique called Inter-Context Register Modi-
fication where a victim process is caused to update its own
CPU state with an attacker’s modified value either through
reloading the previously saved context or through execut-
ing the attack code that modifies a register. As a consis-
tent entry point for persisting the ATRA effect, we also en-
gage a few CPU registers that do not change across context-
switching between processes. We show that Register-bound
ATRA can completely circumvent the existing hardware-
based external monitors due to their limitations. We also
reported that they cannot reliably detect Memory-bound
ATRA due to the race condition for protecting dynamically
allocated kernel objects including page tables and to the
complexity of observing all possible attack vectors that are
available throughout the multiple steps involving address
translation for every pointer traversal and memory access.

Our contributions are summarized as below.
Despite the seriousness of the ATRA issue, previous de-

scriptions of the related concepts were a few sentences [2,8–
11, 17–19]. To the best of our knowledge, this paper is the
first work to explore the intricate details of ATRA and thor-
oughly describes the ATRA attack, which covertly controls
the virtual address translation mechanism by manipulating
CPU registers as well as page table related data structures,
and it also demonstrates that ATRA can make all the exist-
ing hardware-based external monitors ineffective.

We implement two ATRA-enabled kernel rootkit attacks
— system call table hooking attack and the LKM hiding at-
tack — without being detected by hardware-based external
monitors. Our performance evaluation with STREAM [20]
and UnixBench [21] show that ATRA does not induce a no-
ticeable performance degradation to the host system.

By showing the effective and complete evading method
against existing hardware-based kernel integrity monitors,
we emphasize the importance of exploring more solid kernel

integrity monitoring schemes that are resilient to the ATRA-
based attacks, and hope that the researchers will pay more
serious attention to the ATRA threat, which have been often
ignored or considered as hypothetical.

2. BACKGROUND AND ATTACK MODEL
Before we explain the ATRA attack in detail, it is neces-

sary that the operating mechanism and the underlying as-
sumption of the existing hardware-based external monitors
are explained along with the attack model.

2.1 Attack Model
The objective of the adversary described in this paper

is to subvert the operating system under the presence of a
hardware-based external monitor. The attacker is assumed
to have obtained a root privilege of a victim system and tries
to deploy a rootkit which manipulates paging data struc-
tures to hijack the control, or hide itself from the entire sys-
tem and the hardware-based external monitor. The adver-
sary is assumed to have the capability to modify any kernel
object in memory. Note that the attacker is capable of mod-
ifying CPU register values whereas existing hardware based
external kernel integrity monitors are incapable of observing
any changes in such registers.

2.2 System Assumptions
We assume that a target system is protected by a

hardware-based external kernel integrity monitor that has
the capability of introspecting the target system’s physical
memory regions where kernel data structures are located.
It is important to note that the hardware-based external
monitor detects the existence of any write traffic or modi-
fication destined for the monitored memory region so that
it can protect any attempt to modify the important kernel
data structures stated above. If the regions to be monitored
are static (such as kernel codes and the system call table),
the address locations to be monitored can be set in advance.
However, for the dynamic kernel data structures, the ad-
dress locations to be monitored cannot be set in advance,
it must be determined after the dynamic memory object is
allocated.

ATRA is applicable to any multi-paging system, however,
for the brevity of ATRA discussion, we assume that the tar-
get system is based on the x86-32bit architecture with two-
level paging for its virtual memory management mechanism
and adopts Linux operating system. In the x86 architec-
ture, the MMU performs address translation by referencing
the processor’s CR3 register and traverses in-memory data
structures such as the page tables. The CR3 is a base reg-
ister which contains the physical address of root page table
so called Page Global Directory (PGD). The MMU uses this
CR3 register to locate the physical address of the PGD and
traverses the page tables depending on the level of paging.
PGD holds 1024 entries that store the physical address of
page tables. These page tables, pointed by PGD entries, also
have 1024 entries of physical address of a page. Each page
table is referred to as PTE (Page Table Entries).1 MMU
obtains the physical address of the top-most entry in the

1In Linux kernel source code convention and its documen-
tations, PTE also signifies a single entry in the page table.
For clarity of discussion in this paper, we use ‘PTE’ to refer
the page table, and ‘PTE entry’ for the entry.

168



PGD by referencing the CR3 register and begins page table
walking for the requested translation.

2.3 Operations of Existing Hardware-based
External Monitors

To the extent of our knowledge, the current hardware-
based external monitoring technology is limited to host
memory monitoring; they are not capable of monitoring
CPU states such as registers and flags. Also, the seman-
tic gap between the host machine and external monitor in-
troduces a significant challenge especially in locating the ob-
jects that need to be monitored in the host’s virtual memory.
These monitors focus on detecting kernel rootkits in a possi-
bly compromised kernel. However, they assume the integrity
of the kernel address translation [7–11] and this assumption
persists even in the recent works.

In case of Copilot [7], it relies on the addresses of kernel
symbols generated at compile time listed in the System.map
file. Also, it calculates the physical addresses of the mon-
itored regions by simply using the constant offset between
the virtual addresses of the linear-mapped kernel region and
their corresponding physical addresses. That is, the physical
address of the kernel symbol in a linear-mapped region can
be calculated by subtracting the linear mapping offset (i.e.,
0xC0000000 ). Vigilare [8] inherits this technique to deter-
mine the physical address of the monitored area that sup-
posedly contains the important static kernel code and data.
KI-Mon [9] and MGuard [10] also monitor kernel static re-
gion in a similar fashion.

Besides the page table integrity issues, the CPU registers
play a critical role in the virtual address translation of the
host. In fact, the registers serve as the root of page table
walking. CR3, for example, stores the physical address lo-
cation of the page directory for the process context that is
currently being executed by the CPU [22].

3. ADDRESS TRANSLATION
REDIRECTION ATTACK

We categorize ATRA into two types: Memory-bound
ATRA and Register-bound ATRA. Memory-bound ATRA
modifies the data structures related to the page table, while
Register-bound ATRA achieves the translation redirection
by directly or indirectly compromising the values related to
the CPU registers such as CR3.

3.1 Memory-bound ATRA
Memory-bound ATRA targets the PGD and PTE in order

to change the address translation mapping. While the PGD
and PTE are essentially identical data structures, there is
an important difference: PGD exists for each process while
the kernel PTE is shared globally across processes. Due to
this difference, the detailed application of ATRA against
PGD (PGD-ATRA) requires more sophisticated method
than PTE (PTE-ATRA). We first explain PTE-ATRA, then
PGD-ATRA.

Method for PTE-ATRA: PTE-ATRA can be accom-
plished by simply modifying an entry in PTE where each
PTE entry maps a page frame in physical memory (a 4KB
page in conventional x86 systems). Assume that the kernel
data structure (i.e., system call table) of the host kernel re-
sides in a page that corresponds to a virtual address range
from 0xC0001000 through 0xC0002000. An adversary has

a new page allocated using a function from the kernel mem-
ory allocation API such as kmalloc, then copies the content
of the page with original kernel data structure to the new
one (with kernel privilege, the attacker can also copy the
page properties as well). The adversary can modify this re-
located copy instead of the original one. Lastly, the attack is
completed by overwriting the PTE entry which corresponds
to 0xC0001000 with the physical address of the kernel data
structure copy created on the newly allocated page frame.

Since PTEs that correspond to the kernel virtual memory
space are shared among all processes, this modification af-
fects the entire system. Figure 1 shows the three steps in
PTE-ATRA.

Method for PGD-ATRA: PTE-ATRA can be easily ap-
plied, however, the detection also can be easily applied by
monitoring the PTE. To avoid the detection against PTE
manipulation, PGD-ATRA can be performed in a similar
manner. However, unlike PTE-ATRA, PGD-ATRA needs
to be launched for each process to make a system-wide ef-
fect. This is because each process has its own copy of PGD
which maps the globally shared kernel PTEs [23]. In Linux,
a simple way of accessing the entire PGDs in the system
is traversing the linked list of task structs. Steps in PGD-
ATRA are depicted in Figure 1.

After PGD-ATRA comes into effect, PTE-ATRA can be
launched without being detected. However, PGD-ATRA
can be detected by extending the PTE-ATRA detection
scheme. As long as the adversary employs memory mod-
ification as the technique to achieve ATRA, the arms race
of the attacker and the defender will be iterated as the level
of paging increases.

We have discussed ATRA that exploits in-memory pag-
ing data structures of address translation. However, the
mitigation methodology of Memory-bound ATRA that ma-
nipulates the in-memory component of the address trans-
lation seems to be evident; external monitor should check
the integrity of the in-memory paging data structures. For
instance, a simple write detection scheme on a single ker-
nel PTE which contains the mapping for the target kernel
data structure can be a mitigation method for PTE-ATRA.
In the case of PGD-ATRA, the detection scheme becomes
more complicated since the PGDs are dynamically allocated
as a new process is created. However, the basic strategy for
mitigation would be the same as PTE-ATRA.

3.2 Register-bound ATRA
The Register-bound ATRA exploits the fact that all exist-

ing hardware-based external monitors are incapable of mon-
itoring CPU states. A concept of this attack was briefly
mentioned in previous work [7, 11, 18, 19]. They considered
this attack to be impractical or hypothetical. Our Register-
bound ATRA proves otherwise. Register-bound ATRA tar-
gets the base register (CR3 in case of x86) of virtual address
translation. As previously explained, the CR3 register is
used by the MMU as the root of page table walking. By
modifying the register, we can induce the MMU to walk our
malicious page table instead of the original. This means that
the virtual address space mapping of the process victimized
by ATRA can be arbitrarily manipulated by attacker.

Saved-CR3-ATRA: A straightforward way to achieve
CR3 modification would be overwriting the saved-CR3 val-
ues from memory (i.e., task struct→mm→pgd in the case
of Linux). We mention this ATRA application method as

169



Page Directory 
Entry

Page Directory 
Entry

yPage Directory
Entry
PGD
entry

Page Directory 
Entry

Page Directory 
Entry

Saved CR3Saved CR3

Page Directories
(PGDs)

for Processes

Physical Memory
Saved Context
for Processes

Modified Pointer Translation

M
onitored M

em
ory Region

Pointer Redirection Preparation

PTE
entry

PTE
entry

Copy of
Page Table(PTE’)

for Kernel

Copies of Page
Directories(PGD’s)

for Processes

Normal Pointer Translation

Page Table
(PTE)

for Kernel

CR2

CR0

CR4

schedule()

Hardware Registers in CPU

N
on-m

onitored M
em

ory Region

yPage Directory 
Entry
PGD
entry

S ved C 3Saved CR3Saved-CR3

Kernel Obejct
(KObj)

Kernel Object
Copy (KObj’)

Register-bound ATRA Memory-bound ATRA

CR3-ATRA
Saved-CR3-ATRA PTE-ATRAPGD-ATRA

CR3

Figure 1: Overview of Address Translation Redirection Attack (ATRA): ATRA can exploit the multiple steps
in the virtual to physical address translation. PTE-ATRA modifies the page table entry that points to the
original kernel object (KObj), so that the access is redirected to the copy (KObj’). PGD-ATRA manipulates
the page directory entry that points to the original PTE. Saved-CR3-ATRA modifies the CR3 value saved
in memory so that the context switch restores the modified value into the CR3 register when the targeted
process is scheduled back. Finally, CR3-ATRA directly modifies the content of CR3 register so that the
address translation starts with the manipulated PGD copy (PGD’). Note that CR3-ATRA directly updates
CR3 register in CPU, not modifying any known memory-component.

Saved-CR3-ATRA, which provides an easy way to manip-
ulate the entire CR3 of processes under context switching
environment as shown in Figure 1.

Although Saved-CR3-ATRA is straightforward and easy
to implement, it involves modification of an in-memory com-
ponent since the saved-CR3 value resides in a memory re-
gion which the external monitor can be configured to ob-
serve. Figure 1 also shows ATRA attacks that achieve redi-
rection attack by modifying in-memory components. They
are PGD-ATRA, PTE-ATRA and Saved-CR3-ATRA. PGD
and PTE ATRA manipulate the paging data structures
on memory, and Saved-CR3-ATRA modifies the saved-CR3
value (via task struct→mm→pgd), which is also located in
a known memory region. Since these three ATRAs leave
traces in memory, the external monitors can check the in-
tegrity of the known memory components. However, the
next version that we will introduce does not manipulate any
previously known memory component.

CR3-ATRA via Inter-Context Register Modifica-
tion: Modifying an arbitrary register value of another pro-
cess is not a straightforward task since the modification must
not involve any change to the known memory regions which
the external monitor could protect. In order to change the
CR3 value of another process without modifying previously
known memory region, attacker must induce the target pro-
cess to update the CR3 register value from its running con-
text. To overcome this challenge, we sought to find a regis-
ter based system-wide hooking point which the attacker can
inject his code into another running process across context

switching. Good examples of this hooking points are IDTR,
SYSENTER EIP MSR register.

We adopt the widely-known Interrupt Descriptor Table
(IDT) hooking [24] to induce the target process to execute
the code that modifies the CR3 register. More specifically,
we force the victim process to invoke the attacker’s code be-
fore the victim process enters the interrupt handler. The
attacker’s code will load the physical address of the relo-
cated PGD into the CR3 register directly (Note that the
attacker’s code relocates entire chain of the paging data
structures starting with the PGD as well). We refer this
technique as Inter-Context Register Modification. We also
describe the use of SYSENTER EIP MSR for enabling the
Inter-Context Register Modification in Section 7.

The Inter-Context Register Modification technique en-
ables the attacker to manipulate the CR3 register of an ar-
bitrary process by changing the control flow (without mod-
ifying known in-memory component) before it accesses any
kernel object. Using this technique, CR3-ATRA is launched
every time a process enters kernel mode. This can be guaran-
teed because a process must raise an interrupt before enter-
ing the kernel address space (exceptional case will be further
discussed in Section 7). System calls are the most common
example of such interrupts; a non-privileged process raises
software interrupt (e.g., INT 0x80 ) to temporarily enter the
kernel space. Similarly, other cases such as page fault, signal
handling and hardware interrupt would require the interrupt
handling [23].

By hooking the IDTR, we avoid direct manipulation of the
IDT entries which the memory access could be monitored.

170



Note that the initial starting point of an interrupt handling
is the physical address value stored in a system-wide global
CPU register that points the IDT (IDTR). Unlike the CR3,
IDTR is not bounded to any process context. As a result,
we can easily relocate the IDT out of the monitor’s view
by overwriting the IDTR just one time. Consequently we
can manipulate any IDT entry which has the address of the
interrupt handler without alarming the external monitor.

To sum up, the Inter-Context Register Modification can
be achieved by hooking one of the system global registers
(e.g., IDTR, SYSENTER EIP MSR) which cause other pro-
cesses to execute the attacker’s code when they run.

One may monitor the use of the IDTR updating instruc-
tion (LIDT ) after booting as an indicator of IDT hooking at-
tempt. However, existing hardware monitors cannot moni-
tor the instructions that are being executed inside host CPU,
thus they cannot determine whether LIDT is being executed
or not.

4. CHALLENGES IN MITIGATING ATRA
In this section, we will discuss the mitigation issue regard-

ing the two types of ATRA in detail.

4.1 Memory-bound ATRA Mitigation
To mitigate Memory-bound ATRA against an object, the

external monitor should guarantee the address translation
integrity of all virtual addresses that are related. Since the
external monitor is capable of monitoring an arbitrary mem-
ory region, mitigating this threat seems to be possible by
checking the integrity of related PGD entries and PTE en-
tries. However, we found that there are some challenges
regarding this mitigation methodology.

Race condition: In order to monitor PGDs and PTEs, ex-
ternal monitor must locate them from the physical memory.
Note that once the external monitor locates PGD, finding
physical memory location of PTE will be a trivial task since
the PGD contains the physical address of entire PTEs (not
vice versa).

Locating PGDs that are created for a newly forked process
is a non-trivial task, since it is a dynamically allocated data
structure which the memory location cannot be determined
in advance. In Linux kernel, dynamic objects typically form
a linked-list structure which can be traversed using pointers
from a fixed entry point. Therefore, in order to locate them,
external monitor could traverse the pointers of such linked
list data structures inside the host memory at runtime. For
example, KI-Mon [9] achieved this capability by implement-
ing a technique so-called Address Translation Engine, which
translates the host virtual address into physical address in
order to traverse the linked list data structures inside the
host memory. With these capabilities of the recent external
monitors, we believe that locating the dynamic data struc-
ture such as PGD is not a challenge.

The challenging part is that locating these dynamic ob-
jects creates a race condition between the external monitor
and the adversary. Consider a situation where a new ker-
nel object that is of interest to both adversary and external
monitor has been created during runtime. If the external
monitor catches this event and locates the newly created
object earlier than the adversary, the object will be suc-
cessfully monitored without any problem. However, if the
adversary’s manipulation attack precedes the adding of the
object to the monitored regions for the external monitoring,

the further integrity protection for the newly created object
might be rendered useless.

In case that the integrity of a dynamically created object
can be verified by comparing it to a known-good-value or
analyzing the semantic consistency invariant of the memory
contents, the race condition may not be a problem. Con-
sider a situation where an attacker hides a process by un-
linking the data structure (e.g., task struct) from its linked
list which is used for the process enumeration. An exter-
nal monitor can verify this attack by comparing the linked
list of task struct to the scheduler’s run-queue that contains
scheduled task struct. In this case, the timing of the pro-
cess hiding attack is not an issue for integrity verification,
consequently race condition does not need to be considered.
However, if the external monitor must enforce that the ar-
bitrary initial value of the object not to be changed, the
integrity verification can be unreliable due to the possibili-
ties of race conditions.

The Master Kernel Page Directory contains the untam-
pered original of the PGDs [23]. Thus the PGD contents
regarding the specific target object’s virtual address could
be previously defined, which creates a semantic invariant.
However, to mitigate Memory-bound ATRA, the external
monitor should, in fact, check the integrity of additional
data structures that are subject to the race condition (we
will discuss this in the following paragraph). Therefore, we
argue that the race condition is a challenge for mitigating
Memory-bound ATRA.

Enumerating intermediate pointers: Another challenge
in mitigating Memory-bound ATRA is the large attack sur-
face where ATRA can be applied besides the PGD itself.
This is because the kernel scheduler references a list of in-
termediate pointer values to reach the PGD of the next
scheduled process. If the attacker is able to manipulate any
of these pointers or change the virtual to physical address
mapping of these pointer values, the kernel scheduler can be
redirected to reference the maliciously crafted copy of the
PGD located in a non-monitored region.

Before we discuss in more details, we should note some re-
lated facts regarding the PGD and kernel scheduler. When
the context switch occurs due to system events such as inter-
rupt and preemption, the scheduler selects next process to
be scheduled. This selection is determined by the schedul-
ing algorithm being used in the system (i.e., Completely Fair
Scheduling, O(1) Scheduling and so on). Once the scheduler
selects the next process, the scheduler references the PGD
of corresponding process from memory and loads the PGD’s
physical address into the CR3 register (switch mm()) [23].

As previously mentioned, there can be a significant num-
ber of intermediate pointer paths that the kernel scheduler
can traverse to reach the PGD. For example, the value of the
saved-CR3 is always referenced via struct mm (mm→pgd)
by scheduler. Similar to the case of PTE-ATRA, the at-
tacker can copy the saved-CR3 value into another memory
location and change the mm pointer instead. In addition,
there exists a set of paging data structure entries that are ref-
erenced by the MMU for each pointer traversal. Hence, these
paging data structures need to be monitored along with the
pointers themselves to detect Memory-bound ATRA. Fig-
ure 2 depicts such an example.

We used LXR [25] tools to inspect the kernel source code
for enumerating every pointer paths and the associated data
structures between kernel scheduler and the saved-CR3. We,

171



task_struct

*pgd

mm_struct

PGD
entry

pgd

Page TableData structure for locating PGDMemory region to be monitored
to prevent ATRA

…

*pgd

mm_struct

PGD
entry

pgd

…

…

Virtual address referencing Virtual to physical address translation

struct sched_class

pick_next_table()

struct sched_entity

struct cfs_rq

struct rq

Kernel
Scheduler

Per-CPU

*mm

task_struct

PGD

…

PTE

*mm

PGD
PTE

PGD
PTE

PGD
PTE

Figure 2: Additional Regions to be Monitored for Memory-bound ATRA Mitigation: The intermediate
pointers between the kernel scheduler and the PGD form a convoluted linked list structure depending on the
scheduling algorithm implemented in the kernel scheduler. Each of the PGD and PTE needed for translating
virtual address of these pointers should also be monitored for mitigating Memory-bound ATRA. The solid
arrow line represents the virtual address pointer referencing. The dotted arrow indicates the virtual to
physical address translation.

then, checked each pointer manually and verified the ex-
ploitability for ATRA. Table 1 shows the profiled results
regarding these data structures and pointers, types of which
are categorized into global, or per-CPU or per-process spe-
cific.

Global data structures uniquely exist throughout the en-
tire system, whereas per-CPU, per-process data structures
exist for each CPU core and processes respectively. Global
and per-CPU data structure are statically allocated during
boot time, and they can be profiled beforehand so that they
can be monitored. On the other hand, per-process data
structures are created as a new process or thread is created,
hence locations of these per-process data structures cannot
be known in advance. Note that all these data structures
are subject to the aforementioned race condition issue be-
tween the monitor and the attacker as the monitor scans
the currently present processes and their data structures.
Therefore, monitoring per-process data structures is a non-
trivial task at best.

4.2 Register-bound ATRA Mitigation
As discussed, the mitigation of Memory-bound ATRA

seems to be difficult, but there is no architectural limita-
tion. That is, all modifications are made to the memory
region where the location is in the view of the external mon-
itor. However, this is not the case for Register-bound ATRA
because the modifications on the registers are invisible to the
hardware-based external monitor.

There has been a theoretical suggestion in the previous
work for possible mitigation of relocation attacks. The idea
is to scan the pages from the physical memory and search
for the duplicate copy of kernel data structure which should
uniquely exists throughout the entire memory [11]. For
example, if there exists more than one system call table data

structure, such case can be suspected as result of a relocation
attack. However, the use of such heuristics would be limited
and unreliable for many reason. First, it requires a signature
for identifying the data structure from memory dump, since
the semantic is not known to the memory scanner. Also, the
heuristics can only be used for data structures whose number
of instances are fixed. If a certain type of data structures
are constantly allocated and deallocated, as the task struct
data structure for each process in Linux, such heuristics are
simply not applicable.

One may argue that analysis of memory access pattern
can be used as a countermeasure. As ATRA is applied
to the victimized process, the original page tables of the
process and the physical page frames that contain the tar-
get data structures are no longer referenced by the system.
Hence, a sudden disappearance of memory traffics on the
abandoned page tables and the original memory regions can
be observed by hardware-based external monitors. A sud-
den drop in read accesses on the monitored critical kernel
memory would certainly seem abnormal. Similarly, a dis-
continuity in bursty write traffic to dynamic kernel regions
can also be distinguished from the normal kernel memory
access patterns.

Nevertheless, such memory access pattern analysis can-
not be a fundamental mitigation for ATRA. Register-bound
ATRA can be selectively applied to victim processes, thus it
is rather an uncomplicated task for the attacker to synthet-
ically generate memory access patterns to the monitored
regions. The memory pattern analysis will be completely
hindered, if the attacker creates some non-ATRA-affected
dummy processes that use the abandoned page tables and
perform meaningless system calls to generate both read and
write traffic to the once abandoned page tables and the mem-
ory regions. Likewise, even without a dummy process, non-

172



Source File Data Structure # of Instance Property Description

include/asm/page.h pgd t per process dynamic saved-CR3 value used by scheduler
include/linux/mm types.h struct mm per process dynamic contains pointer of PGD
include/linux/sched.h struct task struct per process dynamic contains pointer of mm struct
include/linux/sched.h struct sched entity per process dynamic member of task struct, referenced by scheduler
kernel/sched/core.c struct sched class global static contains function pointer of enqueue task()
kernel/sched/core.c struct rq per cpu static selects next task struct to be scheduled
include/asm-generic.h per cpu offset per cpu static contains the offset of percpu area which has rq

Table 1: The potentially exploitable data structures for ATRA from Linux kernel 3.8.1. If any of these data
structures can be maliciously modified, the kernel scheduler will use attacker’s saved-CR3 value. Note that
each PGD, PTE entries for translating the virtual address of these data structures are also exploitable.

ATRA-affected processes will continue to access the origi-
nal data structures, making the pattern analysis difficult.
Moreover, the ATRA code when invoked can also be used
to generate synthetic read/write traffic to the original mem-
ory region.

Also remind that the addresses of the regions to which the
data structures are relocated by ATRA cannot be known,
and they are anonymous among many other seemingly be-
nign memory regions. Therefore, we conclude that the
current hardware-based external monitors that cannot ac-
cess the CPU processor states of the host are vulnerable to
Register-bound ATRA.

5. IMPLEMENTATION
In this section, we present our implementation of ATRA.

The current prototype is implemented and evaluated on a
system running 32-bit x86 Linux operating system. We uti-
lized two representative known rootkits which perform sys-
tem call table hooking and loadable kernel module (LKM)
hiding attack. The functionality of ATRA is implemented
on top of these rootkits for demonstrating the capabilities
and strengths against both static and dynamic kernel data
structures.

We implemented ATRA attack as a Loadable Kernel Mod-
ule (LKM) type of rootkit running in Linux kernel 2.6.28-11.
The pseudocode of the ATRA attack are shown in Algo-
rithm 1. The implementation mainly consists of two parts.
First part is the installation of ATRA ISR through IDT
hooking by IDTR modification. By modifying the IDTR reg-
ister to point to a copy of IDT which contains ATRA ISR,
we let all existing and newly spawning processes to execute
our code in ATRA ISR. The second part of the implemen-
tation in ATRA ISR is invoked by the victim process, as it
enters kernel mode. ATRA ISR induces the victimized pro-
cess to modify the CR3 value within its own context so that
ATRA will be in effect every time the process enters kernel
mode.

The attack process consists of three phases: (i) Attacker’s
preparation; (ii) Victim’s execution of the attacker’s pre-
pared ATRA code; (iii) Victim’s access to the relocated ker-
nel data structure. Note that in Step 5, the attacker needs
to flush the corresponding TLB entry to force the MMU to
walk the relocated page table. Otherwise, the MMU will
keep using the original address mapping that is recorded in
the TLB cache.

Step 1 - Relocate KObj: Relocate the original kernel ob-
ject (KObj) into non-monitored memory region, then ma-
nipulate the copied data structure. The relocate routine al-
locates a new page from non-monitored memory region with

Algorithm 1 Pseudocode for ATRA

Global: Interrupt Descriptor Table (IDT), IDT Register (IDTR)
Input: Kernel Object (KObj) to be manipulated

. Step 1
KObj’ ← relocate(KObj) . Copy KObj into a non-monitored
memory region
manipulate(KObj’)
. Step 2
IDT’ ← relocate(IDT)
redirect pointer(IDTR, IDT’) . Replace the IDTR value with
the address of IDT’
overwrite IDT entry(original ISR, ATRA ISR)
handler ATRA ISR

. Step 3 - PTE-ATRA
PTE’ ← relocate(PTE)
redirect pointer(PTE’, KObj’) . replace

the entry of the PTE’ which points the original KObj with the
address of the KObj’

. Step 4 - PGD-ATRA
PGD’ ← relocate(PGD)
redirect pointer(PGD’, PTE’) . replace

the entry of the PGD’ which points the original PTE with the
address of the PTE’

. Step 5 - Register-bound (CR3) ATRA
redirect pointer(CR3, PGD’). Replace the CR3 value with

the address of PGD’
flush tlb()
original ISR()

end handler

alloc page() then obtains the corresponding virtual address
via page address(). Then, it copies the original page into
the newly allocated page using memcpy() function. After
this relocation is complete, the manipulate routine modifies
the relocated kernel data structure as a typical rootkit does
(in case of the system call table, we can hook the function
pointer).

Step 2 - Relocate IDT: Relocate the original interrupt de-
scriptor table into non-monitored memory region, then ma-
nipulate the copied table. The relocate routine duplicates
the IDT using the SIDT instruction to fetch the virtual ad-
dress of the IDT. Then, the redirect pointer routine updates
the IDTR to point the relocated IDT by using the LIDT
instruction. Lastly, the overwrite IDT entry routine over-
writes the IDT entries to point the manipulated handler
called ATRA ISR.

Step 3 - PTE-ATRA: Launch PTE-ATRA. The relocate
routine duplicates the page table which contains the virtual
to physical address mapping of the KObj. It can obtain the
virtual address of page directory from current→mm→pgd
and the physical address of the page table by indexing the
page directory with upper 10 bits of the virtual address of

173



KObj. Then it converts the physical address of the page
table into virtual address by using va() macro. The redi-
rect pointer routine manipulates the virtual to physical ad-
dress mapping in the relocated page table (PTE’ ) to map
the physical address of relocated KObj (KObj’ ).

Step 4 - PGD-ATRA: Launch PGD-ATRA. Details of this
step is the same as Step 3, except for relocating PGD and
making it to point the manipulated PTE instead of the orig-
inal.

Step 5 - CR3-ATRA: Replace the value of CR3 with the
address of PGD’. The attacker needs to flush the correspond-
ing TLB entry to force the MMU to walk the relocated copy
of the page table. Any further memory access to the orig-
inal kernel object will be redirected to the relocated one.
After this step, it releases the execution flow to the original
Interrupt Service Routine (ISR).

Immediately after the attacker inserts the ATRA-enabled
rootkit module, all processes including newly created ones
will be affected each time when an interrupt is triggered.
More precisely, the effect of ATRA persists while a process
is in the kernel mode and vanishes when the process is sched-
uled out (and the changed TLB entry is flushed out). The
kernel preemption could rarely affect this situation. We will
discuss this further in Section 7.

It is important to note that when a process is scheduled
out, the changed value in CR3 register is not saved back to
the process’s memory descriptor (e.g., mm struct). This is
because the kernel expects that the CR3 value is not mod-
ified while the process is running. When a context switch
occurs, the value of CR3 is simply replaced with the saved-
CR3 value of the next scheduled process.

In addition, since Register-bound ATRA includes addi-
tional steps in the interrupt handler, it can degrade the sys-
tem performance when a process enters the kernel mode.
In fact, the external monitor may not be able to measure
the host system’s performance change induced by ATRA,
however if this change is noticeable enough for the system
administrator we cannot say ATRA is practical attack. We
will discuss this issue in Section 6.

To demonstrate ATRA, we implemented two ATRA
rootkits. Each rootkit relocates the target kernel data struc-
tures (system call table, LKM linked list) before manipulat-
ing them. Description of these two rootkits are presented in
Appendix A.1.

6. EVALUATION
We evaluate the correctness and performance impact of

the ATRA implementation for the x86 Linux system. The
real world rootkits such as adore-ng [26] manipulate various
kernel objects such as system call table, LKM linked list,
etc. By applying ATRA, we have shown that such important
kernel objects can fall as a victim to the ATRA attack. After
a successful ATRA, we verified that the system call table
and LKM linked list are now relocated to a non-monitored
physical memory area, and then we modified these relocated
data structures to launch system call table hooking attack
and LKM hiding attack. These two attacks were successfully
performed while ATRA was in effect system-wide.

Since ATRA only manipulates the host states, not mod-
ifying any state on external monitors, the implementation
specifics of the external monitors will have no bearing with
the applicability of the attack. Any external monitors
that inspect host memory via physical address for integrity-

ATRA
in effect

Figure 3: Screen capture of the ATRA-verification
tool: ATRA Veri program takes the virtual address
of KObj as input and relocates KObj using ATRA.
The numbers in each column corresponds to the
physical address of PGD (obtained from CR3), PTE
and KObj respectively. Note that we manually in-
serted the ATRA rootkit into kernel at Time 5, and
removed it at Time 8. During Time 5 - 8 sec, the
entire system accessed the kernel object at physical
address 0x34C16000 which is a relocated copy of the
original KObj.

check are subject to ATRA. Although no implementations
of hardware-based monitors are publicly available for test-
ing, one can determine ATRA applicability by checking if
the external monitor design employs ATRA defense or not.

To confirm that ATRA has indeed relocated the entire
chain of PGD, PTE and target kernel object (KObj), we
made a simple verification tool (called ATRA Veri) that
takes a virtual address as input and enumerates the physical
address of each paging component. The infected ATRA Veri
process repeatedly enters kernel mode and retrieves CR3
register value and calculates the physical address of PGD,
PTE, and KObj. Using this tool, we have listed the phys-
ical addresses of aforementioned kernel data structures and
compared them before and after ATRA rootkit insertion.
We confirmed that the relocation attack was successfully
applied upon loading the ATRA rootkit into the kernel. Fig-
ure 3 shows the screenshot of ATRA Veri verification result
where the ATRA attack was launched at Time 5 and re-
moved at Time 8.

For evaluating the performance impact of ATRA on the
system, we launched ATRA system-widely against the sys-
tem call table and ran Unixbench 4.1 [21]. Unixbench per-
forms a variety of system operations such as process cre-
ation, system calls, and so forth. We ran 3 trials, which
took around 2 hours.

Figure 5 shows that the performance of the execl and the
system call has degraded. We believe that the additional
ATRA code that was planted into the interrupt handler was
the main cause for the degradation. However, even though
the additional code affects both the execl and the system
call, the execl shows relatively higher performance degrada-
tion. We suspect that this is due to the initial page alloca-
tions made by ATRA. If the ATRA code is invoked for the
first time after a process is created, the code executes the

174



0

500

1000

1500

2000

2500

Copy Scale Add Triad

M
B

/s
Before After After(w/o TLB flush)

Figure 4: STREAM benchmark result: The memory
bandwidth has been decreased after ATRA is in ef-
fect. However, if we launch ATRA without flushing
the TLB (although the attack may not be effective),
the performance degradation becomes negligible.

initial routine, which allocates new pages to be used as the
landing site for the relocation.

Since the execl (wrapper function for execve system call)
is generally the first function invoked by a newly created
process, (thus causing the initial page allocation) the execl
function takes all the performance hit induced from the ini-
tial page allocation. However, in system call benchmark, the
getpid system call is used for performance measure. Since
the getpid system call will always be invoked after the execl,
the initial overhead of the ATRA code will not be reflected
in the system call benchmark. This explains the difference
between the execl and system call benchmark result.

Other than the UnixBench performance experiment, we
also ran the STREAM [20] benchmark to measure the mem-
ory I/O performance since ATRA is expected to incur addi-
tional TLB flushing. Flushing the TLB is known to incur a
significant performance overhead since it requires page table
walking instead of referencing the TLB cache. Note that the
TLB flush induced by context switching does not flush the
kernel mappings from TLB as the page global bit in the page
table entry is set. Thus, the address translation mappings
for kernel regions are rarely flushed on a special occasion
(i.e., TLB is full). However, it is necessary for ATRA to im-
mediately invalidate the TLB entries for the kernel regions,
making the MMU to reference the modified mapping. Fig-
ure 4 shows the STREAM benchmark results where about 3
to 4% of performance overhead were observed when ATRA is
in effect. However, ATRA without TLB flushing feature (al-
though the attack becomes ineffective) showed nearly iden-
tical performance as the case without ATRA. This result
indicates that the TLB flushing is the major cause for the
memory I/O degradation.

The UnixBench and STREAM has shown that ATRA in-
curs additional performance overhead regarding process cre-
ation, interrupt handling and memory I/O. Nonetheless, we
believe the slight difference of the system performance shown
from the experiments is not a noticeable amount of change
from the system administrator’s view. Moreover, it would
be difficult for the external monitor to measure the precise
overall performance of the host system.

0

100

200

300

400

500

600

700

800

900

Execl
Throughput

File Copy 1024 Pipe
Throughput

Process
Creation

System Call
Overhead

Before After

Figure 5: UnixBench score results before/after
ATRA. The score unit for File Copy and Pipe
Throughput is KB/s, and the rest is Loops Per Sec-
ond (L/s). Note that the scores have been normal-
ized by UnixBench baselines. The most noticeable
differences between two results are the performance
degradation of Execl Throughput and the System Call
Overhead (Since the unit is L/s, the actual meaning
of this category is system call throughput.) The
degradation results can be explained by the addi-
tional ATRA code inside the interrupt handler.

The benchmarks performed also served as an evaluation
for the correct implementation of ATRA against victimized
kernel object. The most anticipated error is improper set-
ting of page table entry. Attacker should consider various
possibilities which would create the segmentation fault while
modifying the page table entry. However, the benchmark
test proved the implementation caused no such errors.

Note that even if the ATRA implementation is correct,
additional error could occur if the attacker naively launch
ATRA for dynamic KObj against partial set of victim pro-
cesses. This is because the content of shared dynamic kernel
data structure could become inconsistent between two pro-
cesses. Depending on the situation, this inconsistency might
cause an unexpected error. This is rather a general synchro-
nization issue as we often experience from multithreaded
programming which the programmer (in this case, the at-
tacker) should carefully consider.

7. DISCUSSION
Inter-Context Register Modification via INT 0x80
or SYSENTER: The Intel Pentium 2 processor has intro-
duced a faster system call invoking instruction referred to as
SYSENTER. When the SYSENTER instruction is issued,
the CS, EIP, SS, ESP registers are automatically loaded
with the values saved in the corresponding Model Specific
Registers (MSR). System call invocation using SYSENTER
bypasses the interrupt service routine in traditional invoca-
tions for better performance. The address of the SYSEN-
TER handler is stored in the SYSENTER EIP MSR field
of the MSR register. The SYSENTER handler can also
be relocated in a similar fashion by modifying the SYSEN-
TER EIP MSR field. In both cases – whether it is a INT
0x80 system call or a SYSENTER system call – our reloca-
tion attack would be feasible.

175



PA of A’s PGD

PA Copy of A’s PGD

Process A Process B Process A Process B
Time

PA of B’s PGD

PA Copy of B’s PGD

Context SwitchCR3 Value *
Entering Kernel Mode

PA: Physical Address

* * *

Figure 6: Transient effect of CR3-ATRA. The
ATRA effect set by CR3-ATRA persists while the
victimized process is in kernel mode until the pro-
cess is scheduled out due to context switching. Note
that when the victim process is scheduled back, the
CR3 register will be restored with the saved-CR3
value in memory, which is the original value that
has not been modified by CR3-ATRA.

Transient CR3-ATRA: Launching this attack modifies
the CR3 register of the process directly, however, the register
value saved in memory remains unchanged. Therefore, the
effectiveness of CR3-ATRA becomes transient. The ATRA
effect caused by CR3-ATRA persists while the victimized
process is in kernel mode until the process is scheduled out.
This is because when the victim process is scheduled back,
the CR3 register will be restored with the previously saved
one in memory. Figure 6 describes this transient effect of
CR3-ATRA from the perspective of time and CR3 value.

Kernel Threads: Kernel threads, such as kthreadd or
ksoftirqd, differ from conventional Linux processes; The ker-
nel threads always run in kernel mode, so they do not need to
invoke interrupt handler for accessing kernel objects. There-
fore, the current methods of CR3-ATRA cannot be applied
against kernel threads.

While the current implementation of CR3-ATRA leaves
out the kernel threads, it would be possible to apply ATRA
to kernel threads by injecting CR3-modifying code via other
interrupt handlers (e.g., timer). It should be noted that
the majority of processes are user-space ones, including the
likely targets of rootkits such as ps, ls, and bash.

Register-bound ATRA in Preemptive Kernel: The
transient effect of Register-bound ATRA begins each time
a process enters kernel mode, and the effect ends when the
global TLB entry is flushed. If the kernel is non-preemptive,
this transient effect guarantees the ATRA-affected process
to access the relocated kernel object. However, if the kernel
is preemptive, on a rare occasion, the transient effect might
vanish before the target kernel object is accessed.

For example, consider the following scenario: Suppose
the global TLB entry is flushed then a process enters kernel
mode and invokes Register-bound ATRA code that updates
the CR3 with the physical address of the relocated PGD. Im-
mediately after this, the process is preempted and scheduled
out by timer interrupt. When the process is scheduled back,
the CR3 that contains the address of the relocated PGD will
be replaced with the unmodified saved-CR3 value (on mem-
ory that can be protected by monitor). This makes Register-
bound ATRA effect disappear before the target kernel object

is accessed. However, the ATRA effect will be restored again
when the process enters into kernel mode next time.

To verify the likelihood of such occurrence, we tested
Register-bound ATRA on preemptive Linux kernel and mea-
sured the number of such occurrence by repeatedly checking
if the relocated kernel object was accessed or not. In our
experiment where the victim process accessed the kernel ob-
ject over billion times, no such case occurred — the original
kernel object was never accessed. Therefore, we believe that
the natural likelihood of this scenario is extremely low, al-
though it is possible in theory.

8. RELATED WORK
The existing independent-processor-based kernel integrity

monitors rely on an assumption that relocation attacks on
their monitored kernel components are extremely difficult.
Copilot [7] monitors a fixed range of physical memory ad-
dress. The range is calculated by adding the fixed linear
offset to the kernel symbols generated at compile time. The
underlying assumption in this scheme is that the linear map-
ping between the virtual and physical addresses is intact.
Vigilare [8] adapts the same method to identify the regions
to be monitored, and the corresponding physical address
range will be monitored throughout its operation. The au-
thors explained that relocating a large portion of kernel code
would generate an abnormal traffic in the host system bus.

The LLM [11] introduced a secure kernel integrity moni-
toring scheme which can be utilized for multi-core system.
Their system is composed of a dedicated core and isolated
memory for kernel integrity monitoring. They also sketched
the possibility of memory shadowing attack to evade their
monitoring system because the dedicated core was not able
to access the context of the other core. They claimed that
such hypothetical attack can be detected by heuristics such
as identifying the free pages with kernel data structure.

A few hardware-based external monitors [7, 8, 11] have
briefly mentioned potential ATRA-like attacks and sketched
some heuristic methods for mitigation. The heuristics, how-
ever, might also be evaded or only covered the specific kernel
data structure. For example, the heuristic that detects un-
usual copying of large portions of kernel code objects [8], can
be circumvented by copying a small snippets of the kernel
memory at a time. Furthermore, the heuristic, which iden-
tify duplicated kernel data structures in freed pages [11],
cannot be applied to the dynamic kernel data structures be-
cause the legitimate kernel data structures as well as dupli-
cated ones also remain in raw physical memory, which may
cause numerous false alarms.

These existing works, including MGuard [10] and KI-
Mon [9] that did not mention about the relocation attack at
all, are vulnerable to the ATRA attack since their external
processors are not equipped for monitoring CPU registers.

Unlike the hardware-based external monitors, in the
hardware-assisted approaches such as Hypercheck [17] that
uses SMM (System Management Mode) to run monitor code
can be readily architectured to monitor the host’s CPU reg-
isters since the SMM handler code for monitors shares the
same processor with the monitored host. However, sharing
the same processor entails a context-switching overhead be-
tween mode changes and imposes performance overhead on
the host’s normal operations. Each time the monitor code
runs, the normal operation running on the same processor
must yield and wait until the monitor code completes its

176



inspection routines. Hypercheck also described the ATRA-
like issue as copy-and-change attack and showed how the
well-known IDTR hooking attacks can be detected.

Some of the prior works on hypervisor-based VMI were
aware of the possibilities of ATRA-like monitoring evasion
attacks. Sharif et al. [19] mentioned that any code with ker-
nel privilege could relocate a page table by modifying CR3
register value. Also, Payne et al. [2] claimed that the reloca-
tion attack on the dispatcher component of their monitoring
scheme would require a considerable, if not impossible effort
since the dispatcher is in a 4MB page with the Windows XP
kernel components. Although the possibility of attacks like
ATRA has been mentioned in the previous studies [2, 19],
there has not been a practical implementation and evalua-
tion on the effectiveness of ATRA. We point out that ATRA
might also affect hypervisor-based VMI tools, hoping that
the mitigation of ATRA (described in Section 4) is consid-
ered in the design of future VMI tools. Further discussion
is in Appendix A.2.

9. CONCLUSION
We presented Address Translation Redirection Attack

(ATRA), which exploits the limitation in the existing
hardware-based external monitors to completely circumvent
all existing monitoring schemes. We showed the implemen-
tation of two types of ATRA called: (i) Memory-bound
ATRA, (ii) Register-bound ATRA. We illustrated the grav-
ity of the attack by first providing a set of possible ATRA
mitigations, and then proving that ATRA foils all such coun-
termeasures including even theoretical one. In our imple-
mentation, we successfully manipulated the address transla-
tion mechanism in Linux kernel without touching the mem-
ory regions monitored by hardware-based external moni-
tors. Our evaluation with benchmarks showed that ATRA
does not induce any noticeable performance degradation of
OS. As long as this limitation of the hardware-based exter-
nal monitors remains unresolved, any future advancement
in their monitoring capability will be fruitless. It is our
hope that this work will spur researchers to design a more
trustworthy hardware-based external monitor, addressing
the ATRA mitigation challenges presented in the paper.

Acknowledgements
This research was supported by MOTIE (The Minister of
Trade, Industry and Energy), Korea, under the Brain Scout-
ing Program (HB609-12-3002) by the NIPA (National IT
Promotion Agency). This research is also based on work
supported by the Software R&D Center, Samsung Electron-
ics.

10. REFERENCES
[1] Z. Wang, X. Jiang, W. Cui, and P. Ning, “Countering kernel

rootkits with lightweight hook protection,” in Proceedings of
the 16th ACM conference on Computer and communications
security, ser. CCS ’09, 2009, pp. 545–554.

[2] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An
architecture for secure active monitoring using virtualization,”
in Proceedings of the 2008 IEEE Symposium on Security and
Privacy, ser. SP ’08. Washington, DC, USA: IEEE Computer
Society, pp. 233–247.

[3] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel,
“Ensuring operating system kernel integrity with osck,” in
Proceedings of the sixteenth international conference on
Architectural support for programming languages and
operating systems, ser. ASPLOS ’11. New York, NY, USA:
ACM, pp. 279–290.

[4] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: a tiny
hypervisor to provide lifetime kernel code integrity for
commodity oses,” in Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles, ser. SOSP ’07.
New York, NY, USA: ACM, pp. 335–350.

[5] N. L. Petroni, Jr. and M. Hicks, “Automated detection of
persistent kernel control-flow attacks,” in Proceedings of the
14th ACM conference on Computer and communications
security, ser. CCS ’07. New York, NY, USA: ACM, pp.
103–115.

[6] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection
through vmm-based ”out-of-the-box” semantic view
reconstruction,” in Proceedings of the 14th ACM conference
on Computer and communications security, ser. CCS ’07,
2007, pp. 128–138.

[7] N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A. Arbaugh,
“Copilot - a coprocessor-based kernel runtime integrity
monitor,” in Proceedings of the 13th conference on USENIX
Security Symposium - Volume 13, ser. SSYM’04. Berkeley,
CA, USA: USENIX Association, pp. 13–13.

[8] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B. Kang,
“Vigilare: toward snoop-based kernel integrity monitor,” in
Proceedings of the 2012 ACM conference on Computer and
communications security, ser. CCS ’12. New York, NY, USA:
ACM, pp. 28–37.

[9] H. Lee, H. Moon, D. Jang, K. Kim, J. Lee, Y. Paek, and B. B.
Kang, “Ki-mon: a hardware-assisted event-triggered monitoring
platform for mutable kernel object,” in Proceedings of the 22nd
USENIX conference on Security, ser. SEC’13, 2013, pp.
511–526.

[10] Z. Liu, J. Lee, J. Zeng, Y. Wen, Z. Lin, and W. Shi, “Cpu
transparent protection of os kernel and hypervisor integrity
with programmable dram,” in Proceedings of the 40th Annual
International Symposium on Computer Architecture, ser.
ISCA ’13, 2013, pp. 392–403.

[11] Y. Kinebuchi, S. Butt, V. Ganapathy, L. Iftode, and
T. Nakajima, “Monitoring integrity using limited local
memory,” Information Forensics and Security, IEEE
Transactions on, vol. 8, no. 7, pp. 1230–1242, 2013.

[12] A. T. Rafal Wojtczuk, Joanna Rutkowska. Xen 0wning trilogy.

[13] Xen: Security vulnerabilities. [Online]. Available: http://www.
cvedetails.com/vulnerability-list/vendor\ id-6276/XEN.html

[14] Vmware: Vulnerability statistics. [Online]. Available:
http://www.cvedetails.com/vendor/252/Vmware.html

[15] Vulnerability report: Xen 3.x. [Online]. Available:
http://secunia.com/advisories/product/15863

[16] Vulnerability report: Vmware esx server 3.x.

[17] J. Wang, A. Stavrou, and A. Ghosh, “Hypercheck: A
hardware-assisted integrity monitor,” in Recent Advances in
Intrusion Detection, ser. Lecture Notes in Computer Science,
S. Jha, R. Sommer, and C. Kreibich, Eds. Springer Berlin /
Heidelberg, pp. 158–177, 10.1007/978-3-642-15512-3-9.

[18] S. Jin and J. Huh, “Secure mmu: Architectural support for
memory isolation among virtual machines,” in Dependable
Systems and Networks Workshops (DSN-W), 2011
IEEE/IFIP 41st International Conference on, 2011, pp.
217–222.

[19] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-vm
monitoring using hardware virtualization,” in Proceedings of
the 16th ACM conference on Computer and communications
security, ser. CCS ’09, 2009, pp. 477–487.

[20] J. D. McCalpin, “Memory bandwidth and machine balance in
current high performance computers,” IEEE Computer Society
Technical Committee on Computer Architecture (TCCA)
Newsletter, pp. 19–25, Dec. 1995.

[21] Byte-unixbench: A unix benchmark suite. [Online]. Available:
http://code.google.com/p/byte-unixbench/

[22] Intel 64 and IA-32 Architectures Software Developer’s
Manual, INTEL, Aug 2012.

[23] D. P. Bovet and M. Cesati, Understanding the Linux Kernel,
2nd ed. O’Reilly and Associates, Dec. 2002.

[24] Idt hooking. [Online]. Available:
http://resources.infosecinstitute.com/hooking-idt/

[25] The lxr project. [Online]. Available:
http://lxr.sourceforge.net/en/index.shtml

[26] Stealth. the adore rootkit version 0.42. [Online]. Available:
http://teso.scene.at/releases.php

[27] System calls and rootkits. [Online]. Available:
http://lwn.net/Articles/297500/

177



[28] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee,
“Virtuoso: Narrowing the semantic gap in virtual machine
introspection,” in Security and Privacy (SP), 2011 IEEE
Symposium on, 2011, pp. 297–312.

[29] J. Rhee, R. Riley, D. Xu, and X. Jiang, “Kernel malware
analysis with un-tampered and temporal views of dynamic
kernel memory,” in Proceedings of the 13th international
conference on Recent advances in intrusion detection, ser.
RAID’10, 2010, pp. 178–197.

[30] B. Payne, M. de Carbone, and W. Lee, “Secure and flexible
monitoring of virtual machines,” in Computer Security
Applications Conference, 2007. ACSAC 2007. Twenty-Third
Annual, 2007, pp. 385–397.

[31] A. Lanzi, M. I. Sharif, and W. Lee, “K-tracer: A system for
extracting kernel malware behavior.” in 16th Symposium on
Network and Distributed System Security, ser. NDSS ’09, 2009.

[32] Y. Fu and Z. Lin, “Space traveling across vm: Automatically
bridging the semantic gap in virtual machine introspection via
online kernel data redirection,” in Security and Privacy (SP),
2012 IEEE Symposium on, 2012, pp. 586–600.

[33] A. Srivastava and J. Giffin, “Efficient protection of kernel data
structures via object partitioning,” in Proceedings of the 28th
Annual Computer Security Applications Conference, ser.
ACSAC ’12, 2012, pp. 429–438.

[34] M. Grace, Z. Wang, D. Srinivasan, J. Li, X. Jiang, Z. Liang,
and S. Liakh, “Transparent protection of commodity os kernels
using hardware virtualization,” in Security and Privacy in
Communication Networks. Springer, 2010, pp. 162–180.

APPENDIX
A. APPENDIX

A.1 ATRA Enabled Rootkit Examples
System Call Table (SCT) hooking rootkit: System
call table hooking is a common type of rootkit attack in the
wild [27]. If a rootkit manipulates the system call table, it
can achieve various types of malicious activities such as by-
passing an anti-virus software and hiding its existence from
the process list of the system. Specifically, to hide its own
process information, it needs to manipulate related system
calls that are used for retrieving the process information.
The process status reporting tool such as ps reads /proc
directory to retrieve PIDs of all processes running in the
system. By hijacking read system call, the attacker is able
to hide information of its own process by deleting its PID
from the retrieved result.

One may think that system call table manipulation attack
can be easily mitigated by making the system call table im-
mutable after the system’s boot process, and this immutable
memory region can be simply protected by hardware-based
external monitors. However, we implemented the rootkit
with ATRA that successfully manipulates the system call
table without involving any changes in protected memory
regions and subverts the naive defense mechanism. In our
implementation, it first launches ATRA on the system call
table and then hooks the sys getuid and sys geteuid system
call entries into its internal function. Similarly, the rootkit
can also manipulate other kernel status information such as
network connection and file system information.

Loadable Kernel Module (LKM) hiding rootkit: The
LKM hiding technique shown in adore-ng [26] is another
typical type of real-world rootkit example. A rootkit can
achieve this attack by removing metadata from doubly
linked list of kernel modules, while keeping the actual data
to reside in memory. The LKM hiding rootkit can hide a
kernel module from reporting tools such as lsmod.

Hardware-based external monitors which is capable of
tracing dynamic kernel data structure can detect this at-

tack by observing the linked list in memory page. However,
by launching LKM hiding with ATRA, this event becomes
invisible from the monitor. We implemented an LKM hid-
ing rootkit with ATRA, which manipulates the linked list of
struct module kernel data structure containing metadata of
inserted kernel modules. In our implementation, the rootkit
launches ATRA for the targeted struct module kernel data
structure object, which leads the subsequent LKM hiding
attack to occur outside the view of the monitor.

A.2 Hypervisor-based Virtual Machine Intro-
spection

There have been a few studies on hypervisor-based vir-
tual machine introspection (VMI) for protecting OS kernels
from untrusted codes such as rootkits. Such hypervisor-
based VMI schemes can be classified into two approaches by
their objectives. First, prior works on detecting and analyz-
ing behaviors of rootkits by extracting semantics of kernel
objects [3,6,28–32] emulate the MMU for the virtual address
translation. Such MMU emulations use the page table of ei-
ther guest OS or hypervisor to retrieve the corresponding
host-physical address of the object. Second, prior studies on
protecting the code and data of OS kernel [1, 2, 4, 19, 33, 34]
utilize the hypervisor’s page protection mechanism.

Meanwhile, we surmise that ATRA can affect some of the
hypervisor-based VMIs under certain circumstances. For
instance, ATRA might be able to evade the monitoring of
VMI tools that depend on the guest page table for virtual
to physical translation of the monitored objects, given that
they do not monitor CR3 [6,30]. The monitor would not be
aware of the relocated page tables and will be referencing
the unused old page tables. However, if the guest page table
walking is implemented such that the walking starts from the
monitored context’s CR3 value, ATRA might be detected.

VMI tools built on a hypervisor that employs Shadow
Page Table (SPT) have the necessary capabilities to im-
plement countermeasures for ATRA. More specifically, the
hypervisors are capable of trapping register changes, and
SPT operates by write-protecting the guest page tables and
trapping all modification attempts. However, we accentuate
that VMI tools should consider a countermeasure against
ATRA for reliable introspection. On the other hand, a new
memory virtualization technology often referred to as Nested
Paging has arisen to ameliorate the performance overhead
of SPT. Nested Paging, also known as Extended Page Ta-
bles (EPT) in Intel’s terminology and Nested Page Tables
(NPT) in AMD’s, allows guest kernel to modify its page
tables. While we conjecture that the removal of the write-
protection in guest page tables would make the mitigation
of ATRA more difficult, further investigation of the issue
seems necessary.

178




