
Enabling Resilience in Virtualized RANs with Atlas
Jiarong Xing‡∗, Junzhi Gong§∗, Xenofon Foukas†, Anuj Kalia†, Daehyeok Kim†¶, Manikanta Kotaru†

†Microsoft, ‡Rice University, §Harvard University, ¶UT Austin

ABSTRACT
Virtualized radio access networks (vRANs), which allow run-
ning RAN processing on commodity servers instead of pro-
prietary hardware, are gaining adoption in cellular networks.
Two properties of the vRAN’s “Distributed Unit (DU)” that
implements the lower RAN layers—its real-time deadlines
and its black-box nature—make it challenging to provide re-
silience features such as upgrades and failover without long
service disruptions. These properties preclude the use of ex-
isting resilience techniques like virtual machine migration
or state replication that are used for typical workloads. This
paper presents Atlas, the first system that provides resilience
for the DU. The central insight in Atlas is to repurpose ex-
isting cellular mechanisms for wireless resilience, namely
handovers and cell reselection, to provide software resilience
for the DU. For planned resilience events like upgrades, we
design a novel technique that simultaneously serves cells
from both the old and new DUs via the same radio, and uses
handovers between these cells to migrate user devices. For
unplanned failures, we identify deficiencies in existing RAN
protocols that disrupt cell reselection after DU failure, and
show how we can eliminate these disruptions using a mid-
dlebox between the DU and higher layers. Our evaluation
with a state-of-the-art 5G vRAN testbed shows that Atlas
achieves minimal disruption to cellular connectivity during
resilience events, while incurring low overhead.

CCS CONCEPTS
•Networks→Mobile networks;Wireless access points,
base stations and infrastructure; • Computer systems
organization→ Real-time systems; Reliability; Availabil-
ity.

∗ The first two authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9990-6/23/10. . . $15.00
https://doi.org/10.1145/3570361.3613276

KEYWORDS
5G, vRAN, resilience, handover, RU sharing, RAN failover,
RAN migration

1 INTRODUCTION
The emergence of vRANs [3, 13, 49] brings new promises
and challenges for cellular network operators. On the one
hand, softwarization of the RAN promises benefits like in-
creased feature velocity, a larger vendor ecosystem, security,
and reduced CapEx/OpEx. On the other hand, it opens up
a variety of unexplored problems that naturally arise from
running the vRAN’s real-time and often black-box software
on commodity Linux servers.
This paper focuses on one such problem: the lack of re-

silience in today’s vRANs. Cellular networks provide a crit-
ical infrastructure that is relied upon for emergency ser-
vices and mission-critical applications. However, there are
nomethods for vRANmaintenance or upgrades, or to recover
from crashes in vRAN software or hardware, without caus-
ing significant service disruption lasting many seconds to
minutes (§7). Operators therefore rely on planned late-night
downtime windows for maintenance, and accept outages
during crashes. This limits the benefits of vRANs, e.g., since
version upgrades or security patches are difficult to apply.

This paper presents Atlas, the first system to provide re-
silience for the vRAN’s real-time component, called the “Dis-
tributed Unit” (DU). The DU is deployed in far edge datacen-
ters close to the radios, and consists of the lower layers of
the vRAN stack, including the Physical (PHY), Media Access
Control (MAC), and Radio Link Control (RLC) layers. Atlas
provides a new primitive called “DU migration”, which al-
lows moving the PHY–RLC processing for a cell from one
DU to another DU on a different server. With Atlas’ proactive
migration, operators can upgrade or service a DU without
downtime, seamlessly moving each user device (also called
user equipment, or UE) attached to the source DU to another
DU. Atlas’ reactive migration handles abrupt hardware and
software failures, with a sub-second disruption.

There are two main challenges in making the DU resilient.
First, the DU has strict sub-millisecond real-time latency
deadlines, which precludes the use of general-purpose re-
silience approaches like virtual machine or container migra-
tion that require pausing the running software for hundreds
of milliseconds. Second, since the DU requires highly com-
plex and optimized software written by domain experts, it
is often a black box where the source code is proprietary

https://doi.org/10.1145/3570361.3613276

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Xing and Gong et al.

or unavailable. For example, Radisys’ minimal open-source
DU that implements only a small subset of DU functional-
ity contains 180K source lines of code [17]. This precludes
resilience techniques used for higher layers of the cellular
stack that significantly modify the source code to externalize
all computation states into a reliable state store [29, 40].
Our observation behind Atlas is we can use cellular net-

works’ existing mechanisms for wireless-level resilience to
provide software-level resilience. For example, during proac-
tive DU migration, we need to move UE processing from
the source DU to the destination DU; this happens naturally
during UE handovers, where UEs disconnect from one DU
and reconnect to another. Similarly, during reactive DU mi-
gration, we need to re-create UE sessions at the destination
DU; this happens naturally during a process called “cell res-
election”, where UEs lose coverage from their original DU
(e.g., after turning a sharp corner while walking), and then
quickly discover and reconnect to a different DU.

Using the existing resilience mechanisms in Atlas presents
two challenges. First, for proactive migration, we need a way
to serve two cells—one each for the source and destination
DUs—from the same radio unit (RU) during a transient period.
This is challenging because the entire vRAN stack is designed
assuming a one-to-one RU–DU association. We investigate
intuitive RU-sharing approaches, e.g., via splitting only along
the time and frequency dimensions, and discuss their infea-
sibility. Instead, we design a novel lightweight RU-sharing
mechanism that also splits along the spatial dimension by
using the RU’s multiple antenna ports, and exploits special
properties of cellular control channel signals. We implement
the RU sharing by introducing a vendor-agnostic fronthaul
network function for multiplexing the fronthaul traffic of
the DUs, and by introducing radio resource scheduling logic
for mitigating interference at the MAC layer.

Second, for reactive migration, we identify 5G RAN proto-
col limitations, caused by their design being agnostic to DU
failures.We show how these limitations can delay UEs’ recon-
nection to a backup DU after the primary DU fails, and cause
the UEs to subsequently disconnect. In lieu of the standards’
protocol fixes, we present a clean and lightweight midhaul
network function that brings DU failure awareness to the
“Centralized Unit” (CU) above the DU, enabling fast failover.

To demonstrate the generality and portability of our de-
sign, we implement Atlas’ fronthaul NF for three different
targets (an eBPF hook in Intel FlexRAN PHY, DPDK-based
software middlebox, and Tofino switching ASICs), and we
realize the interference mitigation logic at the MAC layer
by leveraging parameters exposed by the open O-RAN E2
interface. We also implement the midhaul NF in C++ as a
lightweight process running on the CU server. Our implemen-
tation requires minimal modifications to the vRAN software,
which is well aligned with 3GPP and O-RAN specifications.

Radio unit
(RU)

RLC

MAC

PHY

Distributed unit (DU)

RRC

PDCP
CU-CP

SDAP

PDCP
CU-UP

Centralized unit (CU)

F1-C

F1-U

RAN intelligent controller (RIC)

E2

Mobile
core

< 10 ms – Real-�me

State update frequency
and delay tolerance

> 10 ms – Non-real-�me

xRAN

Figure 1: A typical vRAN deployment model. The RU
and DU are connected via a fronthaul network, and
the DU and CU are connected via a midhaul network.
They communicate through open interfaces.

We evaluate Atlas in a production-grade 5G vRAN testbed
with commercial UEs. Our experiments show that Atlas sup-
ports proactive migration with zero UE downtime, and re-
active migration with as little as 700ms of downtime. In
both cases, UEs regain their full performance after migra-
tion finishes. We show how Atlas can be implemented with
near-zero compute and latency overhead.

2 MOTIVATION AND BACKGROUND
2.1 A primer on virtualized RANs
RAN components. Figure 1 illustrates a typical 5G vRAN
deployment, with its three main components: the Radio Unit
(RU), the Distributed Unit (DU), and the Centralized Unit
(CU). The RU is typically implemented in fixed-function
hardware (e.g., ASICs or FPGAs), while the DU and CU are
software applications running on commodity servers. Each
RU constitutes a “cell”, and connects to the DU via a fronthaul
network. For this work, and without loss of generality, we
use the terms RU and cell interchangeably to indicate a one-
to-one mapping of a cell to the radio hardware.

The “virtualized” DU and CU serve the various RAN pro-
tocol layers (see below). The DU has strict real-time latency
requirements and therefore runs close to the RUs. The CU
is delay-tolerant and can therefore run farther away from
the RU. A DU server typically hosts several (e.g., ten) cells,
and a CU server hosts hundreds of DUs. A RAN Intelligent
controller (RIC) facilitates the programmability of the RAN.
RAN protocol layers. RAN functionality is divided into
several layers, each responsible for a distinct set of control
and/or data plane operations (Figure 1). The DU implements
the real-time layers, e.g., the PHY layer for wireless signal
processing, and theMAC layer for scheduling radio resources
among UEs. The CU implements the more delay-tolerant
layers, such as the Radio Resource Control (RRC) layer that
manages radio-related UE operations, including handovers
that move the UE from one cell to another.

Enabling Resilience in Virtualized RANs with Atlas ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

Open RAN interfaces. The RAN components communi-
cate with each other via a set of standardized interfaces,
designed for interoperability by consortiums like 3GPP and
the O-RAN Alliance [9]. Three DU interfaces are relevant to
this work: the xRAN fronthaul interface with the RU, the F1-
C interface with the CU’s control plane, and the E2 interface
with the RIC. The xRAN interface that carries digitized radio
signals (IQ samples) has real-time latency requirements.

2.2 Need for resilience in vRANs
The cellular network is a crucial piece of infrastructure that
needs to be highly available to support critical applications,
such as public safety and factory automation. Resilience
has been studied extensively for the cellular network’s non-
real-time components, i.e., the mobile core and CU (e.g., [29,
40, 44, 46, 47]). Supporting resilience for the DU, however,
poses unique challenges due to its strict real-time latency
requirements and black-box nature, with no solution existing
at this time. We divide DU resilience events into two types:
Planned events. A key promise of vRANs is the ease of
(1) rolling out updates, such as new RAN features and OS-
/security patches; and (2) hardware servicing via planned
maintenance. These happen frequently, e.g., according to
AT&T, some subsets of their RANs are upgraded daily, but
with pre-planned downtime [45, 51]. However, due to the
lack of resilience mechanisms for vRAN DUs, such updates
today create significant downtime for users, lasting several
seconds to minutes (see §7).
Unplanned events. The vRAN must quickly recover from
unplanned failures like software crashes or hardware mal-
functions. Mean time of server hardware failures can range
between 10 and 60 days [7, 15], with repairs taking several
hours [7]. If a vRAN DU server fails, UEs attached to the DU
should quickly be migrated to another DU server.

2.3 Requirements for resilient vRANs
Ideally, a system that supports resilience for vRANs should
provide the following three properties:
Minimal downtime during resilience events. To allow
operators to perform vRAN upgrades and security patches
without concern for their impact on user connectivity, the
system must incur zero downtime during planned resilience
events. For failures, it must keep downtime comparable to
wireless-related service interruptions that users naturally
experience, e.g., due to handover failures.
Minimize overhead and cost. Under normal operations, it
must add near-zero overhead. vRANs operate with tight CPU
and latency budgets, so any overhead must be carefully con-
sidered. Cost should also be kept to a minimum, considering
the large scale of DU deployments (e.g., Dish and Rakuten
report more than 5K DU sites in their networks [38, 48]).

Vendor agnostic. It must be compatible with any standards-
compliant vRAN implementation without modifications, for
two reasons. First, commercial-grade vRAN software is typi-
cally proprietary, written by domain experts, and has extreme
complexity. Recreating it from scratch is not feasible. For
example, even the simplified open-source reference imple-
mentation of OpenAirInterface [4] has more than 600K lines
of code. Second, there are numerous vRAN implementations
for different hardware architectures (e.g., GPUs and SoCs),
so a vendor-specific approach has limited applicability.

2.4 Limitations of existing RAN resilience
approaches

We now discuss how existing cellular resilience approaches
are insufficient for DUs. While no existing techniques target
the DU directly, we discuss their natural DU adaptations.
Offloading UEs to neighbor cells. In traditional RANs,
each cell site has a separate DU appliance. This contains
the impact of DU upgrades or failures to one cell site, since
these events can often be handled by offloading affected
UEs to neighboring cells [45, 51, 52]. For planned events,
the network can do this gracefully using handovers. For
unplanned events, UEs can re-attach to a neighboring cell.
Adapting neighbor cell offload for DU resilience has sev-

eral limitations. First, it is feasible only with dense cell cov-
erage, which is not always available, e.g., in sparse rural and
enterprise deployments. Second, for unplanned failures, UEs
fail to reconnect reliably to the neighboring cell due to the
failure-agnostic nature of existing 5G protocols (§5.2). Third,
ensuring good overlapping coverage requires maintenance
windows, as well as complex cell planning and antenna man-
agement to adjust the power and tilt of RU antennas [51] dur-
ing maintenance. Fourth, UEs experience reduced through-
put due to worse signal quality from the neighbor, e.g., up
to 25% worse TCP throughput in our indoor testbed (§7).
In addition to the above issues, due to the small size of

vRAN datacenters, it is not always possible to even place
neighboring cells’ DUs on different servers. Unlike tradi-
tional RANs, one DU server may host multiple cell sites,
and a server failure may bring down all sites providing cov-
erage overlap. Imposing physical world constraints on DU
placement also goes against the principles of virtualization,
which treats every server as a homogeneous resource. Such
constraints will limit the benefits of virtualization, such as
load-aware dynamic RU-to-server bin packing (called BBU
pooling [42]), an important vRAN feature for efficiency.
Fault-tolerant state store. One technique to build resilient
network functions is to externalize their state in a replicated,
fault-tolerant state store. For example, ECHO [40] uses a key-
value store to replicate the state of an LTE Evolved Packet
Core (EPC), which is delay-tolerant. This approach does not

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Xing and Gong et al.

apply to the DU for two reasons. First, these techniques
require extensive modifications to the entire DU source
code, making it vendor-specific. Second, the latency of fault-
tolerant key-value stores—roughly 100 µs tail latency—takes
away a significant portion of the DU network functions’ TTI-
sized (500 µs) processing budgets. For example, the MAC
layer alone may generate tens of state updates in every TTI.
Creating a new DU instance. One can consider using a
general-purpose resilience mechanism provided by a cluster
orchestration system such as Kubernetes [14] for DU re-
silience. In this approach, the orchestration system handles
updates and failures by creating a new DU instance (e.g., Ku-
bernetes brings up a new DU pod that runs the DU software
stack) and starts routing traffic to the new instance. Such
approaches are not designed for real-time systems, e.g., in
our experiments the long startup time of Kubernetes results
in UE disconnection lasting over 50 seconds (§7).
Stateless migration to a hot-standby DU. Slingshot [32]
shows how the DU’s PHY processing can be seamlessly mi-
grated to another PHY without transferring PHY state be-
tween the two. This works because the PHY has no long-lived
state that affects UEs. In contrast, the DU layers above the
PHY (i.e., MAC and RLC) maintain long-lived UE state (e.g.,
RLC acknowledgement tracking). Our experiments in §7
show that simply bringing up a hot-standby DU disconnects
attached UEs for over three seconds.

3 ATLAS OVERVIEW
Atlas provides a new primitive that we call “DU migration”.
A DU typically serves multiple cells, each connected to a
separate RU. Since Atlas migrates all cells of a DU between
servers during resilience events, we use the terms cell and
DU interchangeably.
To provide resilience, Atlas creates an illusion of two co-

located cells providing the same coverage and signal quality
by exposing a single RU to two DUs—the source and destina-
tion DUs for migration. Building on this illusion, Atlas uses
standard 3GPP mechanisms to move UEs between cells:
1. Proactive migration ∼ handovers: We repurpose the

handover mechanism [5] to seamlessly migrate UEs from
the source cell to the destination cell.

2. Reactive migration ∼ recovery from handover fail-
ures: We repurpose the cell reselection mechanism [6],
originally designed to recover from handover failures, to
quickly reattach UEs to the destination cell.

3.1 Key ideas
3.1.1 Efficient and interference-free RU sharing.
For proactive migration, the main challenge is moving UEs
to the destination cell without disrupting their connections.
Given the limited radio resources and the inherent 3GPP

handover protocol delays, not all UEs can be migrated simul-
taneously. This limitation of handovers introduces a tran-
sient period during which some UEs may have moved to the
destination DU, while others still remain connected to the
source DU. The duration of this transient period depends
on the vendor-specific handover procedure implementations
(e.g., the time gap between two consecutive handovers, the
number of simultaneous handovers that can be triggered,
etc.). As a result, to guarantee zero downtime, the source and
destination DUs must co-exist during the transient period,
which presents two challenges.

(1) Spectrum sharing. Allowing both DUs to transmit
simultaneously causes radio interference, which sig-
nificantly degrades performance.

(2) RU hardware sharing. Today’s commodity RUs sup-
port only one DU. Provisioning a spare RU for redun-
dancy has a prohibitive cost.

We solve these problems with the following two contribu-
tions. First, we develop a method for sharing the wireless
spectrum between the two DUs during migration with min-
imal interference. For user data transfers, we observe that
we can configure the MAC schedulers to multiplex user data
for the two DUs in the time domain by scheduling them in
different TTIs. For the time-sensitive downlink control chan-
nel signals that cannot be similarly re-scheduled, we exploit
their inherent robustness to interference and multiplex them
in the spatial antenna domain.

Second, we develop a method for two DUs to share an
RU’s fronthaul link, giving the illusion that each DU commu-
nicates with a separate physical RU. We implement Atlas’ RU
sharing logic in a “logical” fronthaul network function (NF)
that manipulates and forwards fronthaul packets to/from
the RU. We provide three alternative fronthaul NF imple-
mentations, tailored to deployments with different hardware,
compute, and source-code modification requirements.

3.1.2 Fast UE reconnection after failure.
How quickly can a UE reconnect to a backup DU after the
primary DU’s failure? We make two contributions to answer
this question. First, we perform a detailed measurement of
the timing of UE actions during cell reselection.We show that
when adapted well for DU failovers, this can provide a down-
time comparable to normal recovery from failed handovers,
which UEs experience occasionally in normal operation.

Second, we show how existing 5G protocols agnostic to
DU failures. Although UEs can quickly reattach to a second
DU after losing connectivity with a first DU that remains op-
erational, UEs cannot regain connectivity when the first DU
is no longer operational. As we show in Section 5, long pro-
tocol timeouts delay the UE’s initial re-attachment attempt,
and subsequent timeouts completely disconnect the UE. We
identify these protocol limitations along with possible fixes

Enabling Resilience in Virtualized RANs with Atlas ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

Classified as Microsoft Confidential

• Traffic routing
• RU sharing (§4.2)

Controller (§6.2)

Fronthaul NF

RU

• Handover manager
• Resource manager
• Failover manager

• Fast failover (§5.3)

Midhaul
control plane NF

DU 1
hook

DU 2
hook

CU
hook

Figure 2: The overview of Atlas. Blue boxes represent
the key logical components, and blue lines signify the
control channels.

for the standards in the future. In the meantime, we design a
lightweight midhaul control plane NF that interposes on the
CU-DU control plane traffic to bypass these limitations.

3.2 Atlas architecture
Figure 2 illustrates a logical view of Atlas’ architecture, con-
sisting of the Atlas controller, a fronthaul NF, and a midhaul
control plane NF. Several agents run on the Atlas controller;
these are responsible for initiating DU migration by noti-
fying the fronthaul/midhaul NFs, for interacting with the
DU and CU through hooks that expose parameters for the
scheduling of radio resources and handovers, as well as for
receiving telemetry feedback about the state of the DUs and
the CU. The controller communicates with the NFs and the
DU through an RPC channel.

The Atlas NFs are logical entities that can run in different
physical locations. The fronthaul NF modifies/forwards/-
drops fronthaul packets for RU hardware sharing, and redi-
rects the fronthaul traffic from the primary DU to the backup
DU for failover. We present three implementation options for
the fronthaul NF: i) inline in the DU process using userspace
eBPF hooks, ii) on an existing programmable top-of-rack
switch, and iii) on a software switch. The midhaul NF in-
tercepts the SCTP connection between DUs and the CU to
provide the CU with early DU failure notifications. The mid-
haul NF can reside in the CU, or a separate process; we
currently implement the latter approach.
DU configuration. The source and destination DUs for mi-
gration connect to the same CU, and they both have the
same configuration in terms of the physical layer grid (e.g.,
bandwidth, TDD/FDD config, and MIMO capabilities). A
key difference is that the source and destination cells have
distinct Physical Cell IDs (PCIs); we reserve a few PCIs for
destination cells from the set of reserved PCIs that operators
maintain for future cell deployment [41].
Additionally, we configure the broadcast channels carry-

ing the Master Information Block (MIB) and System Infor-
mation Block (SIB) to use non-overlapping resources in the
time domain (MIB and SIB are crucial information for UEs
for cell detection, synchronization, and attachment). These

RU

Src DU

Dst DU

Handover
Fronthaul NF

Traffic rou�ng
RU sharing

Cell 1

Cell 2

Cell 1

Cell 2

Figure 3: The high level idea of proactive migration.
The source and destination DUs share the RU with At-
las’ fronthaul NF. UEs are migrated via handover.

configurations are required for successful handovers during
proactive migration. They have no negative effect on the
cell’s performance.
RIC integration.Our current prototype uses a custom-built
controller, NFs, RPC channels and CU/DU hooks. However,
we have taken care to align Atlas’ design with the O-RAN
RAN Intelligent Controller (RIC) specifications [11]. The
Atlas controller can be implemented as a RIC xApp. The NFs
and CU/DU hooks can be implemented as service models
running inside E2 Nodes [10], communicating with the RIC
via the E2 interface, with only minor enhancements to the
existing O-RAN specs (see §6).

4 PROACTIVE MIGRATION
Proactive DU migration in Atlas uses handovers (Figure 3),
achieved by serving two 5G cells—one for the source DU
and one for the destination DU—via the same RU. The chal-
lenge here is simultaneously serving two 5G cells that UEs
can successfully communicate with, via one RU shared be-
tween the two DUs. As already discussed in §3, triggering
and executing handovers takes time, depending on the RAN
implementation, leading to a transient period where some
UEs have moved to the destination DU while others still
remain on the source DU. By sharing the RU between the
DUs, we can prevent UE connection disruptions during this
period. However, the current 5G vRAN stack is designed
assuming a 1:1 DU–RU relationship. For example, the RU is
configured with one destination fronthaul address (e.g., IP or
Ethernet) of its peer DU, and it expects to receive an xRAN
protocol-compliant stream of packets from the DU. Similarly,
the DU’s MAC scheduler and PHY layer expect signals to be
sent/received via the entire RU, assuming exclusive use.

We begin by describing two intuitive RU sharing approaches—
time sharing and frequency sharing—and discuss their limi-
tations. We then present our insight of sharing RU antenna
ports in combination with time sharing. Finally, we discuss
how our RU sharing approach fits within the xRAN fron-
thaul protocol constraints, and by our requirement to be
vendor-agnostic. We focus our discussion on the downlink,
and briefly summarize the uplink direction in §4.3.

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Xing and Gong et al.

4.1 RU resources available for sharing
There are two intuitive RU resources that the source and des-
tinationDUs can share: time and frequency.We discuss below
why sharing these resources does not work or is inefficient.
As a piece of background, note that the DU’s MAC scheduler
makes scheduling decisions once every TTI (lasting for 1ms
or less in 5G) [53], and over-the-air signal exchanges hap-
pen once every symbol. Each TTI duration contains multiple
symbol duration (e.g., 14 in a typical 5G configuration).
Time sharing. Is it possible to simply time-share the RU?
For example, our fronthaul NF could allow source and des-
tination DUs to communicate with the RU in alternating
TTIs. This can be done, e.g., by dropping the source DU’s
downlink fronthaul packets in even-numbered TTIs, and the
destination’s in odd-numbered TTIs. However, this approach
is infeasible because both DUs have to send crucial and
time-sensitive control channel information for their Physical
Downlink Control Channel (PDCCH) in every TTI. In the
symbol that one DU sends PDCCH, we must drop either
the other DU’s PDCCH signals, or its user data signals; the
latter could contain important RRC signaling. We implement
this approach with multiple optimizations (e.g., using non-
overlapping PDCCH symbols for the two DUs) and find that
UEs either cannot connect or get near-zero throughput.
Frequency sharing. Can we split the frequency spectrum
available to the RU between the source and destination DUs?
For example, during migration, the source and destination
DUs could use the lower and upper 50MHz halves of a
100MHz RU, respectively. Unlike time sharing, we find that
frequency sharing is feasible through the 3GPP mechanism
of Bandwidth Parts (BWP) [37]. BWP allows dividing a sin-
gle 5G carrier into multiple segments, each of which can be
assigned to a different service or, in our case, to a different
DU. Unfortunately, BWP is an optional 5G feature that some
UEs and vRAN software may not support to minimize their
complexity and cost, limiting the generality of this approach.

Furthermore, even in scenarios where all participants sup-
port BWPs, statically splitting the bandwidth between source
and destination DUs could degrade user performance. Dur-
ing the start of the migration, more UEs are connected to
the source DU, which thus has higher radio resource require-
ments compared to the destination DU. As UEs are gradually
moved to the destination DU, the traffic load and the ra-
dio resource requirements also shift. Considering that the
migration period can be non-negligible when a cell serves
numerous UEs, such a capacity crunch is not acceptable.

4.2 RU sharing in Atlas
Given that the obvious resource-sharing approaches are not
applicable, we investigate whether one of them can be en-
abled once we remove its limitations. We observe that time

Classified as Microsoft Confidential

TTI#1TTI#2

DU 1

DU 2

Antenna
port 1

Antenna
port 2

Control data
User data

A B

Fr
o

n
th

au
l N

F

A B
C D
C D

E F
E F
G H
G H

A B
A B

E F
E F

C D
C D

G H
G H

Antenna
ports

TTI#1TTI#2

Figure 4: Atlas’ RU sharing. Each 2×3 grid signifies two
frequency resource blocks and three symbols. Check-
ered boxes contain control signals (spatially shared);
lettered boxes contain data signals (time-shared).

sharing is feasible if we solve the problem of control chan-
nels collocated over the same TTI. In Atlas, we solve this
problem by observing that a third, less obvious resource
can be shared between the two DUs in addition to time and
frequency: the spatial resource, arising from the RU’s multi-
ple antenna ports. To simplify the discussion below, we use
the terms “antenna ports”, “antennas”, and “spatial streams”
interchangeably, though, in practice, their mapping is a com-
plex process determined by the DU configuration [36]. For
each antenna port, the RU expects to receive (at most) one
packet from the DU for every symbol duration. In the fol-
lowing, we explain how, by using the spatial domain, we can
bypass the limitation of RU sharing for control data. With
this problem solved, we present our solution for time-sharing
the RU between the source and destination DUs.

4.2.1 Antenna port sharing for control channel data.
We use the following RU sharing approach for control chan-
nel data in Atlas: When both DUs send fronthaul packets
with control signals in the same symbol, Atlas splits the
antenna ports and maps the signals to non-overlapping sub-
sets of ports as illustrated in Figure 4. The symbols carrying
control signals are known a priori to Atlas, since they are
statically configured for all cells at deployment time and
source and destination cells have the same configuration.

Naturally, transmitting the control signals of both DUs at
the same time (possibly with some spatial streams dropped)
leads to destructive interference. Our choice to adopt this ap-
proach, despite the interference, is driven by the following ob-
servations: The downlink control channel carries two broad
types of messages: i) data-related (e.g., UE scheduling deci-
sions, HARQ feedback), and ii) non-data-related (e.g., paging,
group UL power control). We observe that data-related con-
trol messages from the two DUs do not interfere because they
implicitly fall under Atlas’ user data time sharing, i.e., for
downlink, they are sent at the same TTI as the corresponding
data; for uplink, they are sent in a previous Atlas-controlled
TTI. Non-data-related control messages do not fall under the

Enabling Resilience in Virtualized RANs with Atlas ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

same time-division scheme and can interfere, but they are i)
relatively rare, and ii) highly robust (QPSK with high code
rate, 24 CRC bits), because they target UEs with unknown
signal quality. Given this, we expect interference for edge
users to be minimal and not worse than the interference
experienced by the existence of neighboring cells.

Antenna sharing can be implemented with near-zero over-
head using simple forwarding rules, making it cost-efficient
and easy to implement. It should be noted that to handle
the DUs’ inability to share spectrum for control channels,
we also considered an alternative approach of combining
the two DU’s downlink fronthaul packets in our fronthaul
NF, by summing up their IQ samples. However, we opted
for our current solution, because, while the latter works, it
adds latency overhead and cost, since it cannot be imple-
mented inline in the hardware switch or the DU. Instead, it
requires a software switch that, as we show in §7.4, has an
order of magnitude higher latency compared to the other
two implementation approaches.

4.2.2 Time sharing for user data and broadcast channels.
Unlike control channel data that is low-rate and designed to
be robust, user data may use MIMO for high-performance
transmissions, which is significantly more prone to inter-
ference. For example, a typical transmission of user data
could use 4 layers MIMO with 256QAM, while control signal
transmissions typically use diversity gain SISO with QPSK
and high code rates. If we use the same spatial multiplexing
technique as in the case of control channels, and we drop
spatial streams of user data from the other DU, this can result
in significant performance degradation. Furthermore, user
data may be multiplexed with broadcast messages (MIB/SIB).
If we opt to drop the broadcast data, UEs will lose synchro-
nization and will be disconnected (or will fail to attach).

We overcome this problem by using time-sharing for user
data. Using dynamic RIC policies, we configure the MAC
layer of the source and destination DUs to schedule user
data in symbols of non-overlapping TTIs. Time sharing al-
lows us to dynamically adjust the resource allocation on the
fly to avoid capacity crunches during the migration period.
Atlas collects telemetry data from the DUs (utilization of
radio resources) and changes the TTI allocation ratio ac-
cordingly (see more details in §4.4). Our fronthaul NFs work
synchronously, ensuring that only one DU is allowed to send
downlink data in all the symbols of each TTI. The sched-
uling policy is configured to guarantee that DUs will send
downlink data whenever they have broadcast messages (con-
figured in non-overlapping TTIs, as explained in §3).

4.3 xRAN protocol-compatible RU sharing
We have described a high-level view of Atlas’ RU sharing. We
now show how to make our approach compatible with the

Algorithm 1: Atlas fronthaul NF
Input: An xRAN packet pkt .
Output: Traffic steering decision.

1 if pkt is an uplink packet then
2 return duplicate;
3 else if pkt is a downlink control plane packet then
4 if pkt is from source DU then
5 if pkt is for antenna port 0 then
6 return forward

7 else return drop ;
8 else // pkt is from destination DU
9 if pkt is for antenna port 0 then
10 return remap_to_1_and_forward

11 else return drop ;
12 end
13 else // downlink user plane packets
14 if pkt is received in the allocated time then
15 return forward

16 else return drop ;
17 end

standard xRAN fronthaul protocol. For simplicity, we omit
some details such as xRAN “control plane” packets (distinct
from the control channel signals discussed above).

In every symbol duration, the DU and RU exchange xRAN
packets as follows. For every antenna port, the RU receives
one downlink packet from the DU, and generates one uplink
packet for the DU. Violating this causes undefined RU behav-
ior, affecting user connectivity. To share the RU among two
DUs while following the xRAN protocol, we need to carefully
handle xRAN packets. We realize it as follows (Algorithm 1):
Time alignment. The xRAN packet sequences of the two
DUs must be time-aligned . For this, we time-synchronize the
DUs with the RU using the Precision Time Protocol (PTP).
Uplink packets. For any given symbol, each DU must re-
ceive an uplink packet from the RU. To enable it, Atlas du-
plicates and sends uplink packets to both DUs. This works
because although a DU’s PHY layer may receive signals
meant for the other DU, this is no different from normal
interference. The vRAN layers naturally filter out only the
desired information via the MAC scheduling decisions and
standard error checking such as forward error correction.
Downlink packets. For any given symbol and antenna, the
RU must receive only one downlink packet, either from the
source or destination DU. As discussed in §4.2, our fronthaul
NF is aware of the type of signals (i.e., control or data) in each
packet. The NF parses the downlink packet headers to extract
the information, including the TTI and symbol number, and
antenna ID (called extended Antenna Carrier (eAxC) [9] in
xRAN parlance). In our configuration, the source DU always
uses antenna port 0 for its critical downlink signals (i.e.,
downlink control channel). During the migration process,
the NF remaps the destination DU to use antenna 1 for its
critical downlink signals by overwriting the antenna ID field

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Xing and Gong et al.

in the packets from the destination DUs carrying such signals.
This can be trivially extended for cell configurations with
downlink signals using more than one antenna port.

4.4 Adaptive resource allocation
We further optimize our DU migration to improve resource
utilization and minimize the impact on UEs. First, Atlas dy-
namically adjusts the time slots allocated to each DU, using
telemetry collected from the DUs about the resource block
(RB) utilization. The TTIs are allocated to the DUs propor-
tionally based on their average RB utilization over a small
window (e.g., 10ms). Moreover, when choosing UEs to mi-
grate, Atlas prioritizes inactive UEs with low data rates and
waits active UEs to complete their transmission. This ensures
that the impact on UEs’ activities will be minimized, e.g., due
to interference on the downlink control channel or packets
dropped during the handover.

5 REACTIVE MIGRATION
Atlas handles unplanned resilience events (i.e., DU software
or hardware failures) differently from proactive migration,
for two reasons. First, proactive migration requires the orig-
inal DU to participate in handovers, which is not possible
when it has crashed. Second, failures are much less frequent
than planned events, so the RAN can afford a short downtime,
e.g., comparable to handover failures that UEs experience
occasionally during normal operation.
Reactivemigration ∼ handover failure recovery. Recall
that our approach in Atlas is to use existing mechanisms for
wireless resilience. For reactive migration (i.e., failover), we
use the mechanism that UEs use to recover from handover
failures. When a primary DU fails, Atlas quickly pairs the
RU with a backup DU on a different server. Since today’s
O-RAN RUs lack the functionality to quickly re-route the
fronthaul traffic to a different DU, we use the fronthaul NF
for this purpose.

To the UE, this appears as if it has lost the signal from one
cell and entered the coverage area of a different cell. This is
identical to a phenomenon called “too-late handover” that
happens, for example, when a mobile UE turns a sharp corner
in a city. Since the change in coverage happens abruptly, the
network has no time to smoothly handover the UE between
cells, requiring the UE to reconnect to the new cell.

5.1 High-level approach
To tolerate the failure of a DU server in an edge datacenter
with N primary DUs (one per server), Atlas maintains a
shared backup DU on a separate server that can take over if
any of the N DUs fail. Since it takes a long time (over 40 s
in our case, see §7) to bring up a new DU from scratch, the

Backup DU CUUE

Radio Link Failure

Primary DU

RRC Setup Request

DU failure

UE Release

5G Core timeout
UE Setup

Connection handshake

Primary SCTP timeout

Erase UE
Connection crash

Figure 5:High-levelmessageflows during primaryDU
failover without Atlas.

backup DU is active and ready to take over. During failure-
free operation, the backup DU performs no work (e.g., PHY
signal processing or MAC scheduling), so it can run in a low
power mode.
When a primary DU fails, Atlas’ fronthaul NF starts for-

warding fronthaul traffic for the RUs associated with the
failed DU to the backup DU. This brings up the cell served
by the failed DU back online before affected UEs begin a
process called “cell reselection” to regain connectivity. The
UE notices that its wireless signal to the primary DU is not
working when it repeatedly fails to decode downlink sig-
nals it expects from the primary DU. After the UE’s Radio
Link Failure (RLF) timer expires, the UE searches for the best
available cell and tries to reconnect to it. Since Atlas’ backup
DU is online at this time with the same signal strength as
UE’s previous cell choice, the UE chooses the backup DU’s
cell.
Comparison with handover failure recovery. Our key
finding is that this approach provides a downtime compa-
rable to the UE’s time to recover from handover failures.
We argue that Atlas’ reactive migration downtime is there-
fore acceptable since handover failures are far more likely
than DU failures. We expect DU failures to happen at most a
few times per year. In comparison, Li et al. [34] report that
walking UEs in a commercial LTE network experience han-
dovers once every 70 s; approximately 1 % of handovers fail,
resulting in handover failures every ten minutes. Li et al. [33]
report handovers every 50 s while driving in a 5G network,
off which 1.1 % fail as too-late handovers.
The Radio Link Failure timeout is network-configurable.

In our testbed, we set it to 5G’s lowest possible value (250ms)
to emulate reliable 5G networks without coverage holes.

5.2 Lack of DU failure awareness in vRAN
The main challenge in making failovers quick is that existing
vRAN protocols, specifications, and software implementa-
tions were not designed with DU failures in mind. We believe
that this is because historically, RANs have used specialized

Enabling Resilience in Virtualized RANs with Atlas ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

 0
 40
 80

 120
 160

 0 10 20 30 40 50 60Th
ro

ug
hp

ut
 (M

bp
s)

Seconds

Downlink TCP

DU failure

5G Core timeout

Primary SCTP timeout

Figure 6: Downlink TCP throughput changes during
DU failover implemented by simply re-routing fron-
thaul traffic to a backup DU.
hardened appliances that are less prone to failures. While
one would expect that simply re-routing the RU’s fronthaul
link to the backup DU would suffice, we find that this ap-
proach results in (1) an initial downtime lasting over 3 s, and
(2) complete disconnection of UEs after some time. Figure 6
shows these disruptions for a downlink TCP transfer with
one UE in our testbed (§7). We discuss the causes below.
For background, the control plane protocol between the

CU and DU is called the “F1 Application Protocol” (F1AP) [2],
which uses the Stream Control Transmission Protocol (SCTP)
as its underlying transport. Figure 5 shows a UE trying to re-
attach via the backup DU, using an RRC message sequence.
The CU treats this a normal cell reselection attempt.
Problem 1. Since the CU is unaware of the primary DU’s
failure, on receiving the UE’s re-attachment request via the
backup DU, it sends an F1AP request to the primary DU to
release the UE’s connection. The primary DU cannot respond
to this request since it has crashed, but the CU keeps waiting
for a response. Progress can be made only after the 5G core
(Figure 1) triggers a timeout (3 s in our case), and allows
the CU to establish the UE’s connection on the backup DU
without releasing it on the primary DU.
Problem 2. The CU later learns about the primary DU’s fail-
ure when their F1AP session’s underlying SCTP connection
times out, which takes 30 s in our case. The F1AP proto-
col [2] does not clarify how the CU should react in this case.
In the vRAN implementation that we use, the CU handles the
primary DU’s SCTP timeout by deleting all UEs that were
attached to the primary DU. This disconnects any of these
UEs that had successfully reconnected via the backup DU.
Before describing Atlas’ failover handling in detail, we

discuss the limitations of two straightforward approaches to
tackle the above problems.
F1AP resetmessages.Although F1AP supports “reset” mes-
sages allowing the DU to notify the CU of failures, these seem
designed for only partial failures. For example, management
threads in a DU with irrecoverable errors limited to its MAC
layer could send such messages. A full DU failure (e.g., due to
a server crash) does not allow the DU to send such messages.
Timeout tuning. While it may be possible to tune the 5G
core or SCTP timeouts to reduce the downtime, doing so

would affect failure-free operations which we wish to avoid.
Lowering timeouts to hundreds of milliseconds is dangerous
since such low timeouts can be triggered even during normal
operation, such as when the CU server or a backhaul network
is overloaded. A single CU or 5G core may serve thousands
of remote DUs at various cell sites with different latency and
bandwidth congestion, and we do not want to tune the time-
out for each DU. (Even intra-datacenter transports employ
retransmission timeouts of hundreds of milliseconds, and
connections time-out only after tens of retransmissions).

5.3 Adding DU failure awareness to vRAN
To overcome the above limitations, we design a midhaul
network function and a failover manager running in our
controller (Figure 2), which provide low-latency notification
of DU failures to the CU. The NF interposes on the SCTP
protocol between the CU and the DUs. For each DU, the
NF creates separate SCTP connections with the CU and the
DU, and transparently relays messages between the two
during failure-free operation. When the primary DU fails,
the failover manager detects the failure by noticing the lack
of heartbeats from the DU, and notifies the midhaul NF.

How can ourmidhaul NF quickly indicate the DU failure to
the CU? One could consider sending an F1AP reset message
to the CU. However, since F1AP reset messages must contain
the list of UEs affected by the failure, our NF would need to
decode all F1AP messages, which is infeasible in cases where
F1AP messages are encrypted. Instead, our NF simply closes
its SCTP connection to the CU that it created for the primary
DU, which quickly signals the CU that the DU has failed.
The CU then releases all UEs associated with the primary
DU. This happens before the UEs try to reattach, avoiding
the two problems described above.

Since themidhaul NF interposes on only the delay-tolerant
low-bandwidth CU-DU control plane (roughly 10 Kbps per
UE), it can scale to a large number of DUs and UEs. In addi-
tion, since this NF does not handle realtime data, existing NF
resilience techniques (e.g., ECHO [40]) can make it resilient.

5.4 Failover steps
To complete the picture, we break down Atlas’ failover pro-
cess. For simplicity, we use average numbers for the various
phases, measured with one UE in our testbed (§7).
(1) T = 0 ms: The primary DU crashes.
(2) T = 50 ms: Our failure manager notices the lack of

fronthaul packets from the primary DU, and notifies
the fronthaul and midhaul NFs. The former re-routes
the affected RU’s fronthaul to the backup DU, and
notifies the midhaul NF of the primary DU’s failure.

(3) T = 150 ms: The midhaul NF closes the primary DU’s
SCTP connection to the CU.

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Xing and Gong et al.

(4) T = 600 ms: The UE declares Radio Link Failure, and
tries to reconnect to the backup DU. The CU installs
the UE’s context at the backup DU, restoring the UE’s
connectivity.

(5) T = 700 ms: The UE can exchange data via the backup
DU, completing the failover process.

Importantly, it takes only around 700 − 600 = 100 ms for
the vRAN to re-establish the UE’s connection after the RLF
timeout. This is because much of the UE’s state elements,
including its connection contexts and authentication keys,
do not need to be reconstructed since they are maintained
in the higher layers of the protocol stack (i.e., the CU and
core network). During reactive migration, these get reused
to quickly restart the UE’s connection at the backup DU. For
comparison, it takes approximately 950ms instead of 100ms
for the UE to connect from scratch after the vRAN receives
the UE’s RRC setup message.

6 IMPLEMENTATION
6.1 Atlas network functions
Atlas fronthaul NF. To demonstrate the generality and
portability of our design, we implement the Atlas fronthaul
NF on three different targets. First, we implement it as a
software middlebox for x86 CPUs in ≈ 4500 lines of C++,
using DPDK [25] for low latency.

Second, we implement it in a distributed manner on each
DU using the Janus RAN programmability framework [22],
which allows the introduction of hooks in the RAN CU/DU
functions, for injecting sandboxed userspace eBPF code [18,
27]. Using Janus, we introduce a hook at the xRAN layer of
our PHY software (Intel FlexRAN [26]), and load an eBPF
code (≈ 500 lines of C), which intercepts the downlink xRAN
packets and implements the steering decisions described
in §4.3. In addition, our top-of-rack (ToR) switch mirrors
uplink packets received from the RU to both DUs using the
traffic mirroring feature supported by commodity Ethernet
switches (e.g., port mirroring in Arista EOS [23]).

Third, we implement it for an Intel Tofino switching ASIC
in ≈ 600 lines of P4-16 [43], and deploy it on a programmable
ToR switch. We find that the fronthaul NF logic can be imple-
mented using only a single match-action table by effectively
leveraging the range-matching feature. This implementation
can process the fronthaul traffic at line rate (e.g., 6.5 Tbps
using a 32-port switch).
Midhaul control planeNF. The Atlas midhaul NF is a light-
weight application running on the same server as the CU. It
communicates with the CU-CP and DU control planes using
Linux SCTP sockets. During normal operation, it simply for-
wards CU-DU F1AP messages. Upon receiving a DU failure
notification from the Atlas controller, it notifies the CU of
this failure by closing the corresponding SCTP socket.

(a) RU installed on ceiling (b) Five UEs

Figure 7: RU and five UEs used in our evaluation.

6.2 Atlas controller
The Atlas controller orchestrates migration by managing the
fronthaul and midhaul NFs via their corresponding control
APIs, e.g., Barefoot Runtime RPC APIs for a P4-based fron-
thaul NF, and via gRPC with our midhaul NF. It also interacts
with the CU and DU using Janus control and telemetry hooks
that have been integrated in the commercial-grade CU and
DU software of Capgemini [19].
Handover and resourcemanager. First, the handoverman-
ager uses a non-realtime hook in the CU to trigger handovers.
Second, our resource manager uses a hook in the DU’s MAC
scheduler to implement RU time sharing for user data. We
also use telemetry information from the CU’s RRC layer to
prioritize UEs during migration.
Failovermanager. The failover manager uses DU telemetry
probes in the PHY layer to detect hardware and software
crashes. The probe sends heartbeats to our controller in every
500 µs TTI duration while the DU is alive. If heartbeats are
not received for a timeout duration (set conservatively to
20ms), our controller notifies the fronthaul and midhaul NFs
to trigger DU failover.

It should be noted that our current implementation relies
on Janus for realizing the CU/DU hooks, due to the flexibility
that it offers for changing the control and telemetry logic
on-the-fly. However, the same functionality could also be
implemented using existing O-RAN E2 service models and
3GPP specifications, with minor enhancements. Specifically,
the handover functionality could be implemented using the
traffic steering E2 service model [31] and the required teleme-
try information could be obtained using the KPM [12] and
Network Information [8] service models. Finally, the per-TTI
scheduling of the radio resources between the two DUs could
be achieved using the 3GPP slicing parameters exposed in [1],
using a service model similar to the one described in [28].

7 EVALUATION
Testbed hardware. We evaluate Atlas on a commercial-
grade 5G vRAN testbed (Figure 7). Our testbed uses ceiling-
mounted O-RAN RUs from FoxConn, with 100MHz 4x4
MIMO operating at 3.5GHz (Figure 7a). We use three HPE
Telco DL110 servers, each with one Intel Xeon 6338N CPU,

Enabling Resilience in Virtualized RANs with Atlas ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

RU 1
UE 1 UE 2

UE 3
UE 4

UE 5

Cell 11

RU 2

UE 1 UE 2
UE 3

UE 4

UE 5

Cell 51

−100
−90
−80
−70

dBm

−100
−90
−80
−70

dBm

Figure 8: Radio signal coverage and UE placement in
our testbedwith two 5G cells. Red and blue circles indi-
cate the location of radio units and UEs, respectively.

an Intel E810 100GbE NIC, and an Intel ACC100 accelerator
for PHY forward error correction. The RU and servers are
connected via a 100GbE Arista 7170 Tofino-based P4 switch,
and synchronized with a Qulsar QG2 PTP grandmaster clock.
There are five UEs, which are a mix of Raspberry Pis with
Quectel RM502Q-AE modems, and OnePlus Nord N10 5G
phones (Figure 7b).
Software.Weuse Intel FlexRANv22.03 for the PHY, CapGem-
ini’s 5G stack for the higher DU andCU layers, andMetaswitch’s
Fusion 5G Core. The servers run real-time Linux kernel v5.15.
We run the primary and secondary DUs and the CU on differ-
ent servers. For proactive migration, we start the destination
DU only when needed. For reactive failovers, we keep a
backup DU always running as a hot standby.
Cell configuration. We use the two RUs and five UEs in
our building to emulate a realistic deployment. We deploy
two cells with PCIs 11 and 51, named “cell 11” and “cell 51”,
respectively. Figure 8 illustrates the radio signal coverage
and UE placement in our testbed.

7.1 Comparison with baselines
We use one UE in this section for clarity, and show results
with multiple UEs in later sections. In the experiment, we
use iperf to send downlink TCP traffic with a target rate of
40Mbps and measure the throughput once every second. We
compare Atlas with three baselines for vRAN resilience:

(1) Neighbor cell offload. Although offloading UEs to a
neighboring cell may not always be possible due to DU
centralization (§2.4), we evaluate it for completeness.
We offload the UE from cell 11 (served by DU 1) to
cell 51 (served by DU 2) as follows. For proactive mi-
gration, we use a CU-triggered handover. For failover,
we kill DU 1 and let the UE re-attach to DU 2.

(2) Stateless migration to a hot-standby DU. We use
only one RU (cell 11) in this case. Both DUs connect
to Atlas’ fronthaul NF, which initially forwards traffic
between RU 1 and DU 1. For proactive migration, we
steer the fronthaul traffic from the RU to DU 2. For
failover, we kill DU 1 and then immediately steer the
fronthaul traffic to DU 2.

(a) Proactive migration

 0

 40

 80

 120

 160

 0 10 20 30 40 50 60

Th
ro

ug
hp

ut
 (M

bp
s)

Seconds

Neighbor cell o oad
Hot-standby DU

Atlas

SCTP timeout

(b) Failover

Figure 9: Performance of Atlas’ proactive migration
and failover, compared to the three baselines. The re-
silience event happens at t = 10 seconds.

(3) Creating a new DU instance. Only cell 11 is used.
For both proactive and reactive migration, we kill DU 1,
and immediately launch a new DU on the same server.

Figure 9 shows the results. For proactive migration, At-
las seamlessly moves the UE to the new DU with no visible
connectivity disruption, other than minor TCP rate varia-
tions that also happen in normal operation. In comparison,
offloading to the neighbor cell results in a persistent through-
put drop of around 25%, because RU 2 is farther and has
worse signal quality than RU 1 for the UE (UE #5). The other
approaches—stateless migration to a hot standby DU, and cre-
ating a new DU instance—result in complete disconnection
for around 3 s and 45 s, respectively.
For reactive migration during failover, Atlas maintains

non-zero TCP throughput for every second interval. With
the neighbor cell offload and stateless migration approaches,
we observe UE disconnections, shown by the red arrows
in Figure 9b. As discussed in §5.2, the UE completely dis-
connects from the network at around 30–40 s after failure,
caused by the CU deleting the primary DU’s UEs when their
SCTP connection times out. Results for the “newDU instance”
approach are identical to those for proactive migration, and
are omitted for brevity.

7.2 Multi-UE performance
We next evaluate Atlas’ performance using five UEs.
TCP and UDP throughput.We measure the five UEs’ UL
(uplink) and DL (downlink) throughput changes during DU

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Xing and Gong et al.

(a) Proactive migration (TCP) (b) Proactive migration (UDP) (c) Failover (TCP) (d) Failover (UDP)

Figure 10: Average, min, and max TCP/UDP throughput on downlink/uplink with five UEs. Migration happens at
t = 4 seconds in (a)-(c) and t = 2 seconds in (d).

Figure 11: Average RTT of five UEs during proactive
migration and failover.

migration when they all concurrently transmit TCP or UDP
traffic. All UEs initially connect to cell 11, and run iperf with
a target rate of 8Mbps for DL and 2Mbps for UL. Figure 10
shows the average throughput of all UEs during the migra-
tion, with the minimum/maximum throughput across UEs.
We make the following observations. Overall, Atlas’ mi-

gration techniques have little impact on the UEs’ connectiv-
ity and throughput. For proactive migration, both the TCP
and UDP throughput remain largely unaffected. There are
small throughput variations caused by the migration event,
but these are comparable to natural throughput variations
caused by the noisy nature of wireless channels.

For failover, the TCP throughput drops to zero, but for only
600ms and 850ms for DL and UL, respectively. As discussed
in §5.1, this is comparable to the recovery timeout from han-
dover failures (e.g., 670ms in an LTE study by Li et al. [35]).
After failover, the throughput returns to normal, with high
variation caused by TCP buffering lasting approximately 5 s.
The UDP throughput drops to zero for only 750ms.
Ping latency. Figure 11 shows the average RTT across the
five UEs to a remote server duringmigration, measured every
200ms. Proactive migration has no visible impact on ping
latency. For failover, the RTT increases to at most 650ms for
less than one second and then returns to normal values.
Adaptive time slot allocation.We evaluate the effective-
ness of Atlas’ adaptive resource allocation (§4.4) by compar-
ing it with a static allocation scheme that statically partitions
TTIs evenly between the source and destination DU. In this
experiment, we send 3Mbps UL TCP traffic from each of
the 5 UEs (15Mbps overall), while the total cell capacity is
20Mbps. Figure 12 shows that with static resource allocation,

Figure 12: Average throughput of five UEs with adap-
tive and static resource allocation.

(a) Proactive migration (b) Failover

Figure 13: Performance of low-latency live streaming
with 3s target latency.
the total UE throughput drops below 10Mbps during migra-
tion, since each cell statically gets half of the radio resources.
With the adaptive allocation, the throughput remains unaf-
fected since Atlas gradually shifts capacity from cell 11 to
cell 51 as more UEs are migrated.

7.3 Real-world applications
We use live video streaming as an example to evaluate how
well Atlas preserves connectivity for low-latency applica-
tions. Our experiments show that Atlas migrates the DUwith
negligible impact on video streaming. Our experiment uses
the DASH.js framework, which plays low-latency streams
and reports live latency, video bitrates, and video buffer
sizes [21]. We set the target latency to 3 s, with which the
DASH player tries to stream the video while staying at most
3 s behind the live event. We use framework-recommended
values for other settings, resulting in a 6Mbps video bitrate.

Figure 13 presents the lag behind the live event, and the
server’s buffer size during proactive migration and failover.
We find no significant change in either metric. The video

Enabling Resilience in Virtualized RANs with Atlas ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

quality and fluency are stable during the migration, as the
video buffer is never fully drained.

7.4 Microbenchmarks
Migration time.We measure the time that Atlas needs to
complete DU migration with different numbers of UEs. Over-
all, Atlas can complete the migration within a few seconds.
For proactive migration, Atlas takes 0.5 s for one UE, which
increases linearly with the number of UEs to 1.3 s for five
UEs. Much of this time comes from a limitation of the DU
implementation used in our experiments, which allows trig-
gering only one handover every 0.5 seconds. This time will
decrease by an order of magnitude with more optimized han-
dover triggers (e.g., multiple simultaneous handovers) since
handovers take <100 ms to complete. A typical number of
users that are RRC-connected to a cell is 1–25 [20], so all UEs
will migrate in a few seconds. In addition, each UE retains
connectivity for most of this duration since the over-the-air
actual handover signaling lasts for only around 20–50 ms.
During failovers, the time to re-attach one and five UEs is
0.7 s and 0.9 s, respectively.
CPU and latency overhead. Atlas’ components add little
CPU overhead and latency. Our eBPF hooks in the PHY,MAC,
and RRC layer add at most 2 µs per TTI. This is negligible
for the non-realtime RRC layer, and only 0.4 % of the PHY
and MAC’s 500 µs TTI budget.
The overhead of our fronthaul NF depends on the imple-

mentation used. The P4 switch-based implementation adds
no additional latency beyond the switch’s 800 ns port-to-
port forwarding latency, which is negligible compared to
the xRAN fronthaul’s 100 µs latency budget. If implemented
in a software switch, the NF adds up to 10 µs. A distributed
implementation based on eBPF hooks in the PHY also adds
negligible latency (0.8 µs).
We have not optimize our midhaul NF for performance

yet, because it interposes on the delay-tolerant control plane
between the CU and DU, which carries little traffic (e.g.,
compared to the data plane). Our Linux sockets-based imple-
mentation adds under 100 µs per message.

8 RELATEDWORK
Supporting resilience in cellular networks. Existing lit-
erature studies offloading UEs to neighboring cells to make
cellular networks more resilient [45, 51, 52]. Yang et al. [52]
design a way to estimate the service impact on UEs with hy-
pothetical cellular-tower outages when multiple cells exist
around the UEs. Concord [45] and Magus [51] propose solu-
tions to minimize the disruption due to network upgrades by
carefully coordinating neighboring cells. These approaches
are constrained by traditional RAN deployments having only
one DU per cell site, with no backup DUs for the cell site’s

radio. In contrast, Atlas develops the necessary techniques
to use the multiple servers available to handle a cell site
in vRAN deployments. The result is a design that works
without needing inter-cell coordination or coverage from
neighboring cells, and has less impact on UE performance
since it does not affect signal quality.
Another line of work replicates the computation state

of cellular network functions for high availability [29, 40].
For example, ECHO [40] replicates the state of an LTE core
network to an external key-value store. We believe that it
is infeasible to apply such approaches to DUs due to their
stricter real-time requirements. Slingshot [32] migrates the
DU’s stateless PHY processing to another server, but it does
not handle the DU’s higher stateful layers.
RU sharing/virtualization. Picasso [24] proposes a new
RF front-end design that enables simultaneous transmission
on arbitrary spectrum fragments with a single RF front end
and antenna. Although such features would be useful for
vRAN resilience, they are not available in current commercial
RU designs. HyDRA [30], SVL [50], and Mendes et al. [39]
multiplex the RF front-end in the frequency domain, based
on FFT or filterbank, creating virtual RF front-ends using
isolated spectrum bands. However, morework is needed to re-
alize these techniques in real vRANs setups. NRflex [16] uses
Bandwidth Parts (BWP) for slicing radio resources, which is
an optional 5G feature. In contrast, Atlas can be implemented
in the existing vRANs stack without requiring such features.

9 CONCLUSIONS
We have shown how Atlas solves a key problem in the jour-
ney toward resilient vRANs: making the real-time black-box
DU upgradeable and fault-tolerant. The key insight is to re-
purpose existing cellular resilience mechanisms for software
resilience. To accomplish this, we develop a novel method
for sharing an RU between two DUs by exploiting the spatial
antenna dimension; and we address limitations in existing
5G protocols arising from their failure-agnostic nature. Ex-
periments in a commercial-grade 5G vRAN testbed show
that Atlas handles DU upgrades and failures with little con-
nectivity disruption, and requires few vRAN modifications.
We believe that these techniques form a practical basis for
future resilient vRANs.

ACKNOWLEDGMENTS
We sincerely appreciate the anonymous shepherd and re-
viewers for their insightful comments and suggestions. We
thank Bozidar Radunovic and Victor Bahl for their help and
feedback on this project. This work was supported in part
by the Open Networks Programme within the UK Depart-
ment for Science, Innovation and Technology, CNS-1955422,
CNS-2214272, and a Google Ph.D. Fellowship.

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Xing and Gong et al.

REFERENCES
[1] 2020. 5G Network Resource Model (NRM) (3GPP TS 28.541 version

16.6.0 Release 16). https://www.etsi.org/deliver/etsits/128500128599/
128541/16.06.0060/ts128541v160600p.pdf.

[2] 2020. F1 Application Protocol (F1AP) (3GPP TS 38.473 version 15.8.0
Release 15). https://www.etsi.org/deliver/etsits/138400138499/138473/
15.08.0060/ts138473v150800p.pdf.

[3] 2022. The Journey to a Cloud-Native, Fully Software-Defined vRAN
Architecture. https://www.vodafone.com/sites/default/files/2022-
12/journey-to-cloud-native-fully-software-defined-vran-
architecture.pdf.

[4] 2023. OpenAirInterface. https://gitlab.eurecom.fr/oai/
openairinterface5g.

[5] 3GPP. 2018. Procedures for the 5G System (3GPP TS 23.502 version
15.2.0 Release 15). https://www.etsi.org/deliver/etsits/123500123599/
123502/15.02.0060/ts123502v150200p.pdf.

[6] 3GPP. 2020. User Equipment (UE) Procedures in Idle Mode
and in RRC Inactive State (3GPP TS 38.304 version 15.6.0 Re-
lease 15). https://www.etsi.org/deliver/etsits/138300138399/138304/
15.06.0060/ts138304v150600p.pdf.

[7] Kazi Main Uddin Ahmed, Manuel Alvarez, and Math H. J. Bollen. 2020.
Characterizing Failure and Repair Time of Servers in a Hyper-Scale
Data Center. In IEEE PES Innovative Smart Grid Technologies Europe,
ISGT Europe 2020, Delft, The Netherlands, October 26-28, 2020. IEEE,
660–664. https://doi.org/10.1109/ISGT-Europe47291.2020.9248891

[8] ORAN Alliance. 2020. O-RAN Near-Real-time RAN Intelligent Con-
troller E2 Service Model (E2SM), RAN Function Network Interface (NI)
1.0. ORAN-WG3.E2SM-NI-v01.00 (2020).

[9] ORAN Alliance. 2022. Control, User and Synchronization Plane Speci-
fication. O-RAN Fronthaul Working Group, ORAN-WG4.CUS.0-v10.00
(2022).

[10] ORAN Alliance. 2023. E2 Service Model (E2SM). O-RAN Fronthaul
Working Group, O-RAN.WG3.E2SM-R003-v03.00 (2023).

[11] ORAN Alliance. 2023. Near-RT RIC Architecture. O-RAN Fronthaul
Working Group, O-RAN.WG3.RICARCH-R003-v04.00 (2023).

[12] ORAN Alliance. 2023. O-RAN E2 Service Model (E2SM) KPM 3.0.
O-RAN.WG3.E2SM-KPM-R003-v03.00 (2023).

[13] Altiostar. 2021. Altiostar and Rakuten Mobile Demonstrate Suc-
cess Across Performance and Scalability for Open RAN Network.
https://www.prnewswire.com/news-releases/altiostar-and-rakuten-
mobile-demonstrate-success-across-performance-and-scalability-
for-open-ran-network-301254947.html.

[14] The Kubernetes Authors. 2023. Kubernetes. https://kubernetes.io/.
[15] Robert Birke, Ioana Giurgiu, Lydia Y. Chen, Dorothea Wiesmann,

and Ton Engbersen. 2014. Failure Analysis of Virtual and Physical
Machines: Patterns, Causes and Characteristics. In 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks.
1–12. https://doi.org/10.1109/DSN.2014.18

[16] Karim Boutiba, Adlen Ksentini, Bouziane Brik, Yacine Challal, and
Amar Balla. 2022. NRflex: Enforcing Network Slicing in 5G New Radio.
Computer Communications 181 (2022), 284–292.

[17] O-RAN Software Community. 2023. O-RAN Software Community DU.
https://github.com/o-ran-sc/o-du-l2.

[18] eBPF.io. 2023. eBPF. https://ebpf .io/.
[19] CapGemini Engineering. 2023. CapGemini 5G gNodeB.

https://capgemini-engineering.com/nl/en/services/next-
core/wireless-frameworks/.

[20] Robert Falkenberg and Christian Wietfeld. 2019. FALCON: An Accu-
rate Real-Time Monitor for Client-Based Mobile Network Data Ana-
lytics. In 2019 IEEE Global Communications Conference (GLOBECOM).
1–7. https://doi.org/10.1109/GLOBECOM38437.2019.9014096

[21] Dash Industry Forum. 2023. Low Latency Streaming Powered by
DASH.js. https://reference.dashif .org/dash.js/latest/samples/low-
latency/testplayer/testplayer.html.

[22] Xenofon Foukas, Bozidar Radunovic, Matthew Balkwill, and Zhihua
Lai. 2023. Taking 5G RAN Analytics and Control to a New Level.
In Proceedings of the 29th Annual International Conference on Mobile
Computing and Networking. 1–16.

[23] Scott Geba. 2023. Introduction to Port Mirroring. https:
//arista.my.site.com/AristaCommunity/s/article/introduction-
to-port-mirroring.

[24] Steven S. Hong, Jeffrey Mehlman, and Sachin Katti. 2012. Picasso:
Flexible RF and Spectrum Slicing. SIGCOMM Comput. Commun. Rev.
42, 4 (Aug 2012), 37–48. https://doi.org/10.1145/2377677.2377683

[25] Intel. 2023. Data Plane Development Kit (DPDK). http://dpdk.org/.
[26] Intel. 2023. FlexRA Reference Architecture for Wireless Ac-

cess. https://www.intel.com/content/www/us/en/developer/topic-
technology/edge-5g/tools/flexran.html.

[27] iovisor. 2023. Userspace eBPF VM. https://github.com/iovisor/ubpf.
[28] David Johnson, Dustin Maas, and Jacobus Van Der Merwe. 2022.

NexRAN: Closed-loop RAN slicing in POWDER-A top-to-bottom open-
source open-RAN use case. In Proceedings of the 15th ACMWorkshop on
Wireless Network Testbeds, Experimental evaluation & CHaracterization.
17–23.

[29] Antonios Katsarakis, Zhaowei Tan, Matthew Balkwill, Bozidar
Radunovic, Andrew Bainbridge, Aleksandar Dragojevic, Boris Grot,
and Yongguang Zhang. 2021. rVNF: Reliable, Scalable and Performant
Cellular VNFs in the Cloud. Technical Report. Technical Report MSR-
TR-2021-7, Microsoft.

[30] Maicon Kist, Juergen Rochol, Luiz A DaSilva, and Cristiano Bonato
Both. 2018. SDR Virtualization in Future Mobile Networks: Enabling
Multi-Programmable Air-Interfaces. In 2018 IEEE International Confer-
ence on Communications (ICC). IEEE, 1–6.

[31] Andrea Lacava, Michele Polese, Rajarajan Sivaraj, Rahul Soundrarajan,
Bhawani Shanker Bhati, Tarunjeet Singh, Tommaso Zugno, Francesca
Cuomo, and Tommaso Melodia. 2023. Programmable and Customized
Intelligence for Traffic Steering in 5G Networks Ssing Open RAN
Architectures. IEEE Transactions on Mobile Computing (2023).

[32] Nikita Lazarev, Tao Ji, Anuj Kalia, Daehyeok Kim, Ilias Marinos, Fran-
cis Y. Yan, Christina Delimitrou, Zhiru Zhang, and Aditya Akella. 2023.
Resilient Baseband Processing in Virtualized RANs with Slingshot. In
ACM SIGCOMM.

[33] Yuanjie Li, Qianru Li, Zhehui Zhang, Ghufran Baig, Lili Qiu, and
Songwu Lu. 2020. PBeyond 5G: Reliable Extreme Mobility Manage-
ment. In Proceedings of the Annual Conference of the ACM Special
Interest Group on Data Communication on the Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication (SIG-
COMM). Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3387514.3405873

[34] Yuanjie Li, Zengwen Yuan, and Chunyi Peng. 2017. A Control-Plane
Perspective on Reducing Data Access Latency in LTE Networks. In
Proceedings of the 23rd Annual International Conference on Mobile Com-
puting and Networking (MobiCom ’17). Association for Computing
Machinery, New York, NY, USA, 56–69. https://doi.org/10.1145/
3117811.3117838

[35] Yuanjie Li, Zengwen Yuan, and Chunyi Peng. 2017. A Control-Plane
Perspective on Reducing Data Access Latency in LTE Networks. In
Proceedings of the 23rd Annual International Conference on Mobile Com-
puting and Networking (MobiCom ’17). Association for Computing
Machinery, New York, NY, USA, 56–69. https://doi.org/10.1145/
3117811.3117838

[36] Xingqin Lin, Jingya Li, Robert Baldemair, Jung-Fu Thomas Cheng, Ste-
fan Parkvall, Daniel Chen Larsson, Havish Koorapaty, Mattias Frenne,

https://www.etsi.org/deliver/etsi_ts/128500_128599/128541/16.06.00_60/ts_128541v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/128500_128599/128541/16.06.00_60/ts_128541v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/138400_138499/138473/15.08.00_60/ts_138473v150800p.pdf
https://www.etsi.org/deliver/etsi_ts/138400_138499/138473/15.08.00_60/ts_138473v150800p.pdf
https://www.vodafone.com/sites/default/files/2022-12/journey-to-cloud-native-fully-software-defined-vran-architecture.pdf
https://www.vodafone.com/sites/default/files/2022-12/journey-to-cloud-native-fully-software-defined-vran-architecture.pdf
https://www.vodafone.com/sites/default/files/2022-12/journey-to-cloud-native-fully-software-defined-vran-architecture.pdf
https://gitlab.eurecom.fr/oai/openairinterface5g
https://gitlab.eurecom.fr/oai/openairinterface5g
https://www.etsi.org/deliver/etsi_ts/123500_123599/123502/15.02.00_60/ts_123502v150200p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123502/15.02.00_60/ts_123502v150200p.pdf
https://www.etsi.org/deliver/etsi_ts/138300_138399/138304/15.06.00_60/ts_138304v150600p.pdf
https://www.etsi.org/deliver/etsi_ts/138300_138399/138304/15.06.00_60/ts_138304v150600p.pdf
https://doi.org/10.1109/ISGT-Europe47291.2020.9248891
https://www.prnewswire.com/news-releases/altiostar-and-rakuten-mobile-demonstrate-success-across-performance-and-scalability-for-open-ran-network-301254947.html
https://www.prnewswire.com/news-releases/altiostar-and-rakuten-mobile-demonstrate-success-across-performance-and-scalability-for-open-ran-network-301254947.html
https://www.prnewswire.com/news-releases/altiostar-and-rakuten-mobile-demonstrate-success-across-performance-and-scalability-for-open-ran-network-301254947.html
https://kubernetes.io/
https://doi.org/10.1109/DSN.2014.18
https://github.com/o-ran-sc/o-du-l2
https://ebpf.io/
https://capgemini-engineering.com/nl/en/services/next-core/wireless-frameworks/
https://capgemini-engineering.com/nl/en/services/next-core/wireless-frameworks/
https://doi.org/10.1109/GLOBECOM38437.2019.9014096
https://reference.dashif.org/dash.js/latest/samples/low-latency/testplayer/testplayer.html
https://reference.dashif.org/dash.js/latest/samples/low-latency/testplayer/testplayer.html
https://arista.my.site.com/AristaCommunity/s/article/introduction-to-port-mirroring
https://arista.my.site.com/AristaCommunity/s/article/introduction-to-port-mirroring
https://arista.my.site.com/AristaCommunity/s/article/introduction-to-port-mirroring
https://doi.org/10.1145/2377677.2377683
http://dpdk.org/
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
https://github.com/iovisor/ubpf
https://doi.org/10.1145/3387514.3405873
https://doi.org/10.1145/3117811.3117838
https://doi.org/10.1145/3117811.3117838
https://doi.org/10.1145/3117811.3117838
https://doi.org/10.1145/3117811.3117838

Enabling Resilience in Virtualized RANs with Atlas ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

Sorour Falahati, Asbjorn Grovlen, et al. 2019. 5G New Radio: Unveiling
the Essentials of the Next Generation Wireless Access Technology.
IEEE Communications Standards Magazine 3, 3 (2019), 30–37.

[37] Xingqin Lin, Dongsheng Yu, and Henning Wiemann. 2021. A Primer
on Bandwidth Parts in 5G New Radio. 5G and Beyond: Fundamentals
and Standards (2021), 357–370.

[38] Mavenir. 2023. World’s First 5G SA Network Using Open vRAN on a
Public Cloud. https://www.mavenir.com/case-studies/mavenir-and-
dish/.

[39] José Mendes, Xianjun Jiao, Andres Garcia-Saavedra, Felipe Huici, and
Ingrid Moerman. 2017. Cellular Access Multi-Tenancy through Small
Cell Virtualization and Common RF Front-End Sharing. 35–42. https:
//doi.org/10.1145/3131473.3131474

[40] BinhNguyen, Tian Zhang, Bozidar Radunovic, Ryan Stutsman, Thomas
Karagiannis, Jakub Kocur, and Jacobus Van der Merwe. 2018. ECHO:
A Reliable Distributed Cellular Core Network for Hyper-Scale Public
Clouds. In Proceedings of the 24th Annual International Conference on
Mobile Computing and Networking (MobiCom ’18). Association for
Computing Machinery, New York, NY, USA, 163–178. https://doi.org/
10.1145/3241539.3241564

[41] Sofia Nyberg. 2016. Physical Cell ID Allocation in Cellular Networks.
[42] O-RAN Alliance. 2023. Cloud Architecture and Deployment Scenarios

for O-RAN Virtualized RAN. https://www.o-ran.org/specifications.
[43] p4.org. 2023. P4_16 Language Specification. https://p4.org/p4-spec/

docs/P4-16-v1.2.0.html.
[44] Zafar Ayyub Qazi, Melvin Walls, Aurojit Panda, Vyas Sekar, Sylvia

Ratnasamy, and Scott Shenker. 2017. A High Performance Packet
Core for Next Generation Cellular Networks. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication.
348–361.

[45] Mubashir Adnan Qureshi, Ajay Mahimkar, Lili Qiu, Zihui Ge, Max
Zhang, and Ioannis Broustis. 2017. Coordinating Rolling Software Up-
grades for Cellular Networks. In 25th IEEE International Conference on
Network Protocols, ICNP 2017, Toronto, ON, Canada, October 10-13, 2017.
IEEE Computer Society. https://doi.org/10.1109/ICNP.2017.8117537

[46] Shunmugapriya Ramanathan, Koteswararao Kondepu, and Andrea
Fumagalli. 2022. Resiliency in Open-Source Solutions for Disaggre-
gated 5G Cloud Radio Access and Transport Networks. In 2022 IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN). IEEE, 124–129.

[47] Muhammad Taqi Raza, Zhowei Tan, Ali Tufail, and Fatima Muhammad
Anwar. 2022. LTE NFV Rollback Recovery. IEEE Transactions on
Network and Service Management 19, 3 (2022), 2468–2477.

[48] Rethink Technology Research. 2023. Rakuten Claims Huge Edge Cloud,
as Other Operators Follow Suit. https://rethinkresearch.biz/articles/
rakuten-claims-huge-edge-cloud-as-other-operators-follow-suit/.

[49] Karen Schulz. 2022. Verizon Deploys More Than 8,000 VRAN Cell Sites,
Rapidly Marches Towards Goal of 20,000. https://www.verizon.com/
about/news/verizon-deploys-more-8000-vran-cell-sites.

[50] Kun Tan, Haichen Shen, Jiansong Zhang, and Yongguang Zhang. 2012.
Enable Flexible SpectrumAccessWith SpectrumVirtualization. In 2012
IEEE International Symposium on Dynamic Spectrum Access Networks.
47–58. https://doi.org/10.1109/DYSPAN.2012.6478115

[51] Xing Xu, Ioannis Broustis, Zihui Ge, Ramesh Govindan, Ajay
Mahimkar, N. K. Shankaranarayanan, and Jia Wang. 2015. Magus:
Minimizing Cellular Service Disruption During Network Upgrades. In
Proceedings of the 11th ACM Conference on Emerging Networking Exper-
iments and Technologies, CoNEXT 2015, Heidelberg, Germany, December
1-4, 2015. ACM. https://doi.org/10.1145/2716281.2836106

[52] Sen Yang, Yan He, Zihui Ge, Dongmei Wang, and Jun Xu. 2017. Pre-
dictive Impact Analysis for Designing a Resilient Cellular Backhaul
Network. Proceedings of the ACM on Measurement and Analysis of

Computing Systems 1, 2 (2017), 1–33.
[53] Ali A Zaidi, Robert Baldemair, Vicent Molés-Cases, Ning He, Karl

Werner, and Andreas Cedergren. 2018. OFDM Numerology Design for
5G New Radio to Support IoT, eMBB, and MBSFN. IEEE Communica-
tions Standards Magazine 2, 2 (2018), 78–83.

https://www.mavenir.com/case-studies/mavenir-and-dish/
https://www.mavenir.com/case-studies/mavenir-and-dish/
https://doi.org/10.1145/3131473.3131474
https://doi.org/10.1145/3131473.3131474
https://doi.org/10.1145/3241539.3241564
https://doi.org/10.1145/3241539.3241564
https://www.o-ran.org/specifications
https://p4.org/p4-spec/docs/P4-16-v1.2.0.html
https://p4.org/p4-spec/docs/P4-16-v1.2.0.html
https://doi.org/10.1109/ICNP.2017.8117537
https://rethinkresearch.biz/articles/rakuten-claims-huge-edge-cloud-as-other-operators-follow-suit/
https://rethinkresearch.biz/articles/rakuten-claims-huge-edge-cloud-as-other-operators-follow-suit/
https://www.verizon.com/about/news/verizon-deploys-more-8000-vran-cell-sites
https://www.verizon.com/about/news/verizon-deploys-more-8000-vran-cell-sites
https://doi.org/10.1109/DYSPAN.2012.6478115
https://doi.org/10.1145/2716281.2836106

	Abstract
	1 Introduction
	2 Motivation and background
	2.1 A primer on virtualized RANs
	2.2 Need for resilience in vRANs
	2.3 Requirements for resilient vRANs
	2.4 Limitations of existing RAN resilience approaches

	3 Atlas overview
	3.1 Key ideas
	3.2 Atlas architecture

	4 Proactive migration
	4.1 RU resources available for sharing
	4.2 RU sharing in Atlas
	4.3 xRAN protocol-compatible RU sharing
	4.4 Adaptive resource allocation

	5 Reactive migration
	5.1 High-level approach
	5.2 Lack of DU failure awareness in vRAN
	5.3 Adding DU failure awareness to vRAN
	5.4 Failover steps

	6 Implementation
	6.1 Atlas network functions
	6.2 Atlas controller

	7 Evaluation
	7.1 Comparison with baselines
	7.2 Multi-UE performance
	7.3 Real-world applications
	7.4 Microbenchmarks

	8 Related work
	9 Conclusions
	References

