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Abstract
While mobile live video analytics apps require end-to-end latency

guarantee for responsiveness and immersiveness, achieving con-

sistent low latency is challenging due to complex fluctuations of

wireless channel and scene complexity; for example, latency SLO

satisfaction rate drops to as low as 26% in commercial 5G MEC plat-

forms. Prior works mostly focus on either app-only (bitrate, DNN

adaptation, or GPU allocation) or RAN-only (radio resource alloca-

tion) scheduling, with mutual ignorance of the other side resulting

in mismatched scheduling decisions and frequent SLO violations.

Coordinating the two schedulers is also challenging, as they are run

separately by network and cloud operators with disjoint control.

We present ARMA, an end-to-end live video analytics system with

app-RAN mutual-awareness for high end-to-end latency SLO satis-

faction in MEC. We design a mutually-aware decoupled scheduling

mechanism on top of RAN Intelligent Controller (RIC) in Open-RAN

architecture that fosters cooperative interaction between the two

operators’ schedulers while preserving operational proprietaries.

We prototype an Open RAN-enabled 5G MEC testbed and evaluate

ARMA, showing that ARMA achieves 97% SLO satisfaction rate.
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•Networks→Mobile networks;Cross-layer protocols; •Com-
puter systems organization→ Real-time systems.
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1 Introduction
Live video analytics applications, such as AR/MR [52, 92, 93] or

autonomous driving [55, 101], require real-time processing with

strict latency constraints to ensure responsiveness. For instance, an

autonomous vehicle must detect obstacles within 150ms to avoid

accidents (§2.1). Recently, Multi-access Edge Computing (MEC) ar-

chitectures have emerged to enable low-latency services even for

low-cost cameras without powerful on-board processors [59, 77].

Figure 1: An example of MEC-based live video analytics.

Cellular network and cloud service providers offer such MEC plat-

forms, includingWavelength fromAWS and Verizon [80] and Azure

Edge Zone from Microsoft and AT&T [8]. Figure 1 illustrates an

example deployment scenario (§2.2): A police agency deploys cam-

eras and equips officers with AR glasses for real-time criminal

tracking and jaywalking detection [98]. User Equipment (UE) con-

nects via a Radio Access Network (RAN) to an edge server located

near the base station (BS), where captured videos are streamed and

processed [20, 21].

However, satisfying end-to-end latency requirements—covering

the entire pipeline from frame capture to processing output—is chal-

lenging. Latency fluctuations can occur both at the network stage

(video streaming) and at the compute stage (Deep Neural Network

(DNN) inference), due to dynamically changing wireless channel

conditions and scene complexities. Our empirical measurements on

commercial 5G MEC platforms show that the satisfaction rate for a

150 ms Service Level Objective (SLO) can drop as low as 26% (§2.3).

Existing approaches have designed adaptive live video analyt-

ics systems to address resource fluctuations but typically focus on

either app-only (e.g., bitrate adaptation, DNN model selection, or

GPU scheduling [37, 40, 100]) or RAN-only solutions (e.g., SLO-
aware radio Resource Block (RB) allocation [44, 85]). This limita-

tion arises because app and RAN schedulers are independently

controlled by cloud and network operators, respectively, and their

scheduling algorithms remain proprietary and undisclosed. Conse-

quently, single-sided scheduling leads to sub-optimal performance

(§2.4). Specifically, app-only scheduling (e.g., bitrate andDNNmodel

adjustments) frequently experiences high tail latency due to mis-

matches between scheduled bitrates and allocated RBs. Conversely,

RAN-only scheduling, focusing on radio resource allocation, suf-

fers from reduced throughput and fairness due to conflicting goals

https://doi.org/10.1145/3711875.3729139
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between SLO satisfaction and network fairness. Moreover, sim-

ply combining app-only and RAN-only schedulers without mutual

awareness also proves ineffective, as each scheduler cannot accu-

rately estimate the other’s resource availability and demands.

To overcome these challenges, we present ARMA (App-RAN

Mutual Awareness), an end-to-end scheduling system designed

to achieve high e2e latency SLO satisfaction in MEC live video

analytics. ARMA’s core is a mutually-aware, decoupled scheduling
framework built upon the real-time RAN Intelligent Controller

(RIC) within the Open-RAN architecture [63]. This framework fos-

ters mutual awareness between app and RAN schedulers, enabling

accurate tracking of each other’s resource availability and demand.

Consequently, this leads to more consistent scheduling decisions,

satisfying stringent latency SLO requirements.

Specifically,ARMA achieves high latency SLO satisfaction through

three mechanisms (§3.2): (i) Bitrate-DNN interplay. Leveraging re-

cent findings that heavier DNNs can compensate for accuracy losses

caused by lower bitrate and vice versa [37, 40, 78],ARMAjointly con-
trols bitrate and DNN complexity to optimize latency SLO satisfac-

tion under dynamically varying resource conditions. For instance,

during high workloads, ARMA reduces DNN complexity to lower la-

tency and increases bitrate to preserve accuracy. (ii)Mutually-aware
resource monitoring. ARMA accurately tracks network and compute

resource availability by enabling mutual awareness between app

and RAN schedulers. Specifically, ARMA leverages physical-layer

resource allocation information from RAN to improve bandwidth

estimation accuracy at the application layer, facilitating better bi-

trate selection. (iii) Decoupled scheduling with SLO splitting. To

ensure e2e latency SLO satisfaction despite separate schedulers,

ARMA employs decoupled scheduling where app and RAN sched-

ulers independently split the overall e2e SLO into feasible network

and compute-stage deadlines. The two schedulers exchange only

minimal information necessary for resource monitoring, without

disclosing their scheduling algorithms.

Implementing ARMA, however, presents two significant chal-

lenges (§4.1): (i) Coarse granularity of {bitrate,DNN} scheduling. Ad-
justments to bitrate and DNN configurations occur at coarse time

intervals (e.g., in units of 1-2 seconds per Group of Pictures (GoP))

due to video compression efficiency constraints, making per-frame

adjustments challenging amid frame-level fluctuations. (ii)Handling
sudden resource fluctuation. Unexpected fluctuations (e.g., sudden
increases in workload due to user movements) inevitably introduce

resource estimation errors. Decoupled schedulers following fixed

SLO splits struggle to address these sudden changes effectively.

We address challenges with the following key ideas (§4.2).

• Video-aware stochastic per-GoP scheduler (§5). We build

online stochastic models for network, compute latencies using

video-specific insights (e.g., scene content continuity, encoding
algorithm) to account for per-frame latency fluctuation in coarse-

grained, GoP-wise {bitrate,DNN} scheduling. Our insight is that

the network, compute latencies can be modeled as Gaussian

distributions and tracked using Kalman filters [81]. As sched-

uling {bitrate,DNN} configs to maximize expected latency SLO

satisfaction is an NP-hard problem, we also devise an iterative
probability gradient algorithm that computes an approximate

solution with 𝑂 (𝑀𝑁 ) complexity for 𝑁 users with𝑀 configs.

• Mutually-compensating per-frame schedulers (§6). Given
the selected {bitrate,DNN} configs, we design RB and GPU sched-

ulers capable of mutually compensating each other to robustly

satisfy e2e SLO under resource fluctuations. Specifically, we

split the e2e latency SLO into viable network, compute SLOs

for the two schedulers based on expected latencies (e.g., set net-
work SLO more stringent when workload fluctuation is high).

We also incorporate object-level preemption mechanism in the

GPU scheduler to satisfy SLO even under unexpected latency

increases due to abrupt bandwidth drop or workload increase.

• Mutual awareness-enabling resource monitors (§7). We

design a real-time RIC for the RAN and server to exchange

necessary scheduling information from their resource monitors.

We design the interfaces to foster information exchange without

exposing each other’s proprietary scheduling algorithms. For

example, ARMA’s app scheduler hides e2e SLO, workload, and

DNN inference latencies from RAN by obscuring them into a

single network latency SLO value.

We implement ARMA on srsRAN-5G [72] with a multi-GPU edge

server. Our evaluation across diverse video datasets, covering varied

camera types, scene complexities, and mobility scenarios (static

CCTV, vehicle dashcams, handheld cameras), demonstrates that

ARMAachieves a 97% latency SLO satisfaction rate, representing

up to 48% improvement over state-of-the-art baselines.

2 Motivation
2.1 Why Meeting Latency Criteria Matters?
Live video analytics apps require consistent real-time end-to-end

latency, as illustrated in the following example scenarios.

• Autonomous driving. A vehicle moving at 20 m/s speed is

running object detection to detect surrounding objects. To safely

stop before crashing into a sudden obstacle appearing at 20 me-

ters away, the end-to-end latency should be kept below 150 ms

(assuming 10𝑚/𝑠2 deceleration).
• AR person finding. A police officer’s AR glasses (120° FoV)

run face detection and identification, and display results for the

officer to confirm visually. When monitoring people at a 10m

distance a horizontal span of 17m is covered. At this distance, an

average manwith a 0.4m shoulder width of appears as a 32-pixel-

wide figure on a 1280×720 video frame (minimum detectable

box size of RetinaNet [51]). To track a person moving at 3 m/s

within a 1m area (≈10% of the FoV), latency must be <150 ms.

• VR rendering.AVR user’s HMD captures his surroundings and

streams the video to the server to detect objects and reconstruct

them into 3D for rendering inside his VR space so as to grasp the

existence of nearby physical objects and interact with them [69].

Consistent low latency and jitter is required for immersiveness;

for example, 36 ms base motion-to-photon latency with 6 ms

jitter (<42 ms 99-th tail latency) to avoid motion sickness [75].

2.2 Deployment Model
Figure 1 illustrates our deployment model, reflecting real-world

deployments such as self-driving delivery robots [20] and smart

crosswalks [21]. The model involves three operators: the video

analytics service operator, the RAN operator, and the cloud operator.
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Table 1: RTT (ms) and uplink throughput (Mbps) measure-
ments in commercial 5G MEC platform.

Outdoor

(static)

Subway station

(walking)

Train

(fast moving)

Indoor

(walking)

RTT (𝑚𝑖𝑛 −𝑚𝑎𝑥 ) 24.4–39.7 27.6–86.7 27.2–42.1 25.8–53.7

tput (𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑) 116.2±14.5 100.0±40.1 39.3±21.1 21.4±19.4

Specifically, the service operator deploys camera-equipped UEs

at the target operation site and subscribes to an MEC platform

(e.g., AWS Wavelength [80], Azure Private MEC [8]) comprising

two main components: (i) a premium app latency guarantee plan
from the RAN operator, wherein the RAN scheduler prioritizes

subscribed video analytics (VA) UEs over background non-VA UEs

during radio resource (Resource Block, RB) allocation to meet the

service operator-specified frame latency deadlines, and (ii) an edge
inference engine instance from the cloud operator, offering exclusive

access to a GPU-equipped edge server.

2.3 Latency in Commercial 5G MEC
We analyze end-to-end latency in commercial 5G MEC platforms,

specifically focusing on uplink latency. We currently exclude down-

link latency (i.e., returning analysis results to UEs), as it is relatively
negligible with minimal fluctuations. This is because the size of the

analysis results (e.g., bounding boxes) is substantially smaller than

that of video frames. Moreover, typical 5G deployments allocate

more bandwidth to downlink compared to uplink (e.g., approxi-
mately a 3:1 ratio for the 5G DDDSU format [31]).

2.3.1 Experimental Setup

UE, 5G RAN and edge server. For the server, we use AWS EC2

g4dn.2xlarge instance equipped with an NVIDIA T4 GPU in an AWS

Wavelength Zone connected to a major 5G operator’s network in

South Korea. The UE (Samsung Galaxy S23) streams video to the

server over the operator’s sub-6 GHz 5G (3.5 GHz frequency, 100

MHz bandwidth). Clocks are synchronized by exchanging times-

tamps using the Network Time Protocol (NTP) [62].

Video analytics pipeline.We assume a scenario where a police

officer equipped with AR glasses is pursuing a criminal suspect

through various urban environments. The analysis workload con-

sists of a YOLOv8n [95] person detector and two ResNet-18 [34]-

based analyzers for face and action recognition. The total inference

latency (𝐿𝑐𝑜𝑚𝑝𝑢𝑡𝑒 ) scales linearly with the number of people de-

tected (𝑁𝑜𝑏 𝑗𝑒𝑐𝑡 ) as follows:

𝐿𝑐𝑜𝑚𝑝𝑢𝑡𝑒 = 𝑙𝑑𝑒𝑡𝑒𝑐𝑡 + 𝑁𝑜𝑏 𝑗𝑒𝑐𝑡 · 𝑙𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 , (1)

where 𝑙𝑑𝑒𝑡𝑒𝑐𝑡 and 𝑙𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 denote the detection and per-object

analysis latencies (6.1ms and 1.66ms respectively in our setup). We

evaluate using the MOT17-02 [48] video dataset encoded at 1080p

resolution at 30 fps and 20Mbps bitrate.

2.3.2 Measurement Results

RTT and uplink throughput. Table 1 summarizes the Round Trip

Time (RTT) and uplink throughput measured using Ping and Iperf.

Results indicate strong potential for low-latency analysis, with RTT

values as low as 24.4ms
1
and throughput reaching 116.2Mbps under

1
Other measurements report even shorter RTTs of 10–20ms [4, 85].

(a) End-to-end latency CDF. (b) Latency breakdown (Indoor).

Figure 2: End-to-end latency measurement results.

Figure 3: End-to-end latency
of VideoEdge [37] (box: 25-
75%, error bar: 0-95% range).

Figure 4: Throughput and
network latency SLO satisfac-
tion of Tutti [85].

favorable conditions. However, throughput significantly decreases

and fluctuates in fast-moving trains and indoor environments.
2

End-to-end latency. Figure 2(a) shows that latency is generally

below 150ms under favorable channel conditions (outdoor, subway
station), but significantly increases under bandwidth fluctuation.

For instance, the SLO satisfaction rates for train and indoor envi-
ronments drop to 26% and 8%, respectively, with 95th-percentile

latencies exceeding 600ms. Latency fluctuation occurs in both net-

work and compute stages, as illustrated in Figure 2(b). (i) Frame size
and bandwidth. The network latency 𝐿𝑛𝑒𝑡𝑤𝑜𝑟𝑘 is computed as:

𝐿𝑛𝑒𝑡𝑤𝑜𝑟𝑘 = 𝐹/𝐵𝑊 (2)

where 𝐹 is the video frame size, and 𝐵𝑊 is the network bandwidth.

The frame size varies depending on scene complexity and encoding

frame type (i.e., keyframe or interframe). Bandwidth also fluctuates

based on the UE’s location and mobility [41, 58, 94]. (ii) DNN in-
ference workload. Compute latency fluctuates proportionally to the

number of objects in the scene (Equation (1)), especially in dynamic

environments (e.g., crowded streets with fast-moving pedestrians).
3

2.4 Limitations of Existing Approaches
Although mitigating latency fluctuations at both network and com-

pute stages requires end-to-end scheduling across the application

(UE and server) and RAN layers, prior workmostly focuses on either

application- or RAN-only scheduling. They operate in a mutually-
agnostic manner with schedulers at the other side, resulting in the

following issues.

App-only scheduling suffers from long-tail latency. Recent
systems adapt video encoding bitrate [22, 50, 52, 100], DNN model

complexity [6, 17, 33, 47, 88], or both [37, 40], based on video con-

tent and available resources. Similarly, ML inference serving works

2
A similar study reports throughput around 12Mbps at speeds of 50 km/h [7].

3
This also applies to other workloads (e.g., vision-language models) as discussed in §9.
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optimize GPU scheduling to ensure latency targets [18, 32]. How-

ever, they frequently exhibit poor SLO satisfaction due to mis-

matches between scheduled bitrates and the bandwidth allocated

by the RAN scheduler, which remains unaware of application-layer

frame sizes and latency SLOs. Figure 3 illustrates e2e latencies of

various bitrate (4–20Mbps) and DNN complexity configurations

(ResNet18–101 [34], higher number indicates greater complexity) of

VideoEdge [37] for MOT17-02 [48] video in the train scenario. Even
the best-performing configuration ({10Mbps, ResNet-34}) violates

latency targets 77% of the time (95th-percentile latency is 0.25 s).

RAN-only scheduling suffers from throughput drop. A few

recent works [44, 85] propose RAN schedulers that adjust UEs’

priorities based on app-layer information (e.g., flow size or latency

deadlines [44, 85]), assuming either no or fixed compute-stage la-

tency. For example, Tutti [85] increases a UE’s priority based on its

frame size and exponentially raises this priority as latency dead-

lines approach. However, RAN-only approaches suffer from reduced

throughput efficiency and fairness, as UEs with urgent deadlines

may not always have optimal channel conditions.

We analyze Tutti’s performance [85] in a scenario with five UEs

(three VA UEs and two non-VA file-transfer UEs) on our srsRAN-

5G [72]-based MEC testbed (§8.1).
4
Each VA UE streams 20Mbps

video with a 100ms network latency SLO but experiences differ-

ent channel conditions due to varying mobility and UE-BS dis-

tances. Figure 4 shows the latency SLO satisfaction rates of VA UEs

(bars indicate mean, error bars show min and max) and normalized

throughput for non-VA UEs. Tutti achieves only a 71% latency SLO

satisfaction rate for VA UEs, which, despite being higher than the

34% achieved by Proportional Fair (PF) scheduling, the de facto

standard in commercial base stations [44], still remains low. Fur-

thermore, Tutti reduces the throughput for non-VA UEs by 57%,

significantly harming fairness.

Why does a simple combination of two schedulers fail? One
might consider separately running the app-only and RAN-only

schedulers (e.g., VideoEdge [37] and Tutti [85]) to address the above
challenges. However, such naive and mutually-agnostic combina-

tions fail for two main reasons. First, the app-side scheduler incor-

rectly selects the video bitrate due to inaccurate estimation of the

available network bandwidth, particularly the surplus capacity of

the RAN (determined by the idle RBs and users’ spectral efficien-

cies). Second, the RAN-side scheduler inaccurately sets latency SLO

targets for RB scheduling, as it lacks knowledge of the compute-

stage latencies at the UE and server. We elaborate on these issues

in §3.2, and evaluate the performance of such naive, decoupled

scheduling solutions in §8.

3 Our Approach
3.1 Goals
High latency SLO satisfaction. As motivated in §2.4, we aim at

e2e scheduling of app and RAN to maximize e2e latency SLO satis-

faction of VA UEs, while also maintaining high inference accuracy.

4
Tutti [85] employs a frame-size predictor assuming fixed-bitrate, per-frame JPEG

encoding, which does not apply directly to video encoding scenarios. For this exper-

iment, we assume perfect frame-size knowledge to isolate the impact of conflicting

scheduling goals.

Figure 5: Conventional RAN-agnostic bandwidth estimation
does not know the existence of idle RBs that can be addition-
ally utilized within the SLO (left). Thus, it leads to bandwidth
capacity underestimation (right).

App-RAN cooperation without disclosing scheduling algo-
rithms.While coordinating the app and RAN schedulers for e2e

latency SLO satisfaction, we aim to avoid the two schedulers from

disclosing their proprietary scheduling algorithms to each other

(e.g., channel estimation algorithm of RAN operator, DNN models

and GPU scheduler algorithm for service operator), so as to make

our system practically deployable in split operator settings.

Compatibility. For wide applicability to commercial servers with

various video codecs, DNN inference engines, and hardware, we

control only the video encoding bitrate, DNN model complexity,
5

and GPU access timing for resource scheduling. We also aim to min-

imize RAN deployment overhead by designing standard-compliant

system without modifications of proprietary UE cellular firmware.

3.2 Mutually-aware Decoupled Scheduling
Our approach is to foster mutual awareness between the app and

RAN schedulers, so as to enable each scheduler to accurately track

the resource availability and demand of the other, and make consis-

tent scheduling decisions to satisfy the e2e latency requirement. We

realize this approach using the real-time RAN Intelligent Controller

(RIC) in O-RAN architecture [63], which are actively being designed

to support <1 ms monitor/control delay [19, 27, 45]. Specifically,

we achieve low e2e latency with the following mechanisms:

• Bitrate-DNN interplay. We jointly control the video encod-

ing bitrate and DNN complexity under dynamic resources to

maximize latency SLO satisfaction. For example, when compute

workload is high, we use lighter DNN to reduce compute latency

and increase bitrate to maintain the accuracy. Bitrate-DNN in-

terplay is possible due to two reasons. First, heavier DNN with

more layers and channels can compensate the accuracy loss

from low bitrate (and vice versa), as empirically observed in

several prior studies [37, 40, 78] (e.g., EfficientNet [78]’s princi-

ples of scaling input resolution and DNN’s layers and filters in

tandem). Second, network and compute latency fluctuates with

low correlation due to independence of scene complexity and

wireless channel. For example, Pearson correlation of the two

latency timelines in Figure 2(b) is -0.09.

• Mutually-aware app, RAN resource monitoring. The key
to bitrate-DNN interplay is accurately estimating the resource

demands and availabilities of both network and compute stages,

so as to accurately track the selectable {bitrate, DNN} configs

5
DNNs for various tasks commonly support multiple backbones with wide latency-

accuracy tradeoffs (e.g., ResNet 18-152, YOLOv5 n-x, EfficientNet B0- B7) [14, 79, 95].
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given current resources. For this, we enable mutual awareness

in app, RAN resource monitoring; especially, we leverage RAN’s

physical layer RB allocation information for network bandwidth

estimation. Figure 5 illustrates the need for RAN-awareness:

conventional packet arrival timestamp-based bandwidth esti-

mation suffers from bandwidth underestimation and ignorance

of the available bandwidth capacity from leveraging additional

idle RBs (refer to §7.2 for details).

• Decoupled scheduling with SLO splitting. To enable e2e

latency SLO satisfaction over split schedulers with operational

proprietaries, we take a decoupled scheduling approach, where

the app and RAN schedulers split the e2e SLO into viable net-

work, compute SLOs that each can satisfy. The two schedulers

only exchange the SLO and minimal information for resource

estimation without disclosing their scheduling algorithms.

4 ARMA Design Overview
4.1 Challenges
Coarse granularity of {bitrate,DNN} scheduling. Video bitrate

(and {bitrate,DNN} config accordingly) can be scheduled in coarse-

grained time period (e.g., in units of 1-2s Group of Pictures, or GoP)

and makes it difficult to accurately adapt to frame-level fluctuations

of channel status, frame size and scene complexity. This is due

to two reasons. First, it is difficult to precisely control the size of

each frame, especially in dynamic scenes, as the bitrate is typically

configured as an average over a time window (GoP). Second, an

intra-coded keyframe, which is much larger than inter-frames, must

be inserted whenever the bitrate changes. As a result, frequent

bitrate changes lead to excessive network resource utilization. For

example, changing the bitrate every 500 ms in H.264 encoding using

FFmpeg results in a 59% error between the target and actual encoded

bitrate, as well as a 49% higher overall average bitrate. Thus, prior

works [40, 100] mostly aim at optimizing average throughput and

predict latency as a single average value, thus failing to consider

such per-frame fluctuations.

Handling sudden resource fluctuation. Despite mutually-aware

resource estimation, error from sudden, unpredictable fluctuation is

inevitable (e.g., abrupt workload increase due to user’s head rotation
to another view). With naive decoupled schedulers which follow

only given split SLO, it is hard to handle such sudden fluctuations.

4.2 System Architecture
Figure 6 shows the system architecture of ARMA. It is composed

of data flow (UEs streaming the encoded frames to the server for

DNN inference) and control flow (monitoring network and com-

pute resources, scheduling {bitrate,DNN} configs, and allocating RB

and GPU resources). ARMA consists of the following components,

which operate in the order depicted in Figure 7.

Video-aware stochastic per-GoP scheduler (§5). To account

for per-frame latency fluctuations in coarse-grained {bitrate, DNN}

scheduling, we build online stochastic models (§5.1) for network,

compute latencies using video-specific insights (e.g., scene content
continuity, video encoding algorithm). Leveraging the predicted

latency distributions, RAN-aware {bitrate,DNN} scheduler (§5.2) se-
lects {bitrate,DNN} configs across UEs in units of GoP to maximize

Figure 6: ARMA system architecture (Yellow: existing video
analytics pipeline, Green: ARMA’s resource schedulers, Blue:
ARMA’s resource monitors).

Figure 7: Mutually-aware decoupled scheduling workflow.

the overall expected latency SLO satisfaction. For example, when

two candidate {bitrate,DNN} configs yield the same average latency,

choose the one with smaller variance.

Mutually-compensating per-frame schedulers (§6). Given the

selected {bitrate,DNN} configs, RB and GPU schedulers operate in

a mutually compensating manner to satisfy e2e SLO even under

sudden resource fluctuations. First, latency SLO splitter (§6.1) splits
e2e SLO across the RB and GPU schedulers for each UE considering

its predicted network, compute latencies; for example, it sets a

stringent network SLO for a UEwith high inference workload. Once

the UEs encode their video frames at the target bitrate, App-aware
RB scheduler (§6.2) allocates RBs in units of Transmission Time

Interval (TTI)
6
to stream the frameswithin the splitted network SLO

while also balancing the total RAN throughout and fairness with

background non-VAUEs. Upon receiving the frames, deadline-aware
GPU scheduler (§6.3) schedules GPU to finish DNN inference within

the e2e SLO. To robustly satisfy the SLO even under sudden latency

increase (e.g., due to network bandwidth drop or abrupt scene

change), it incorporates a preemption mechanism to accelerate the

inference execution of a UE that is behind schedule by temporarily

preempting other UEs who need fewer GPUs than expected.

Mutual awareness-enabling resource monitors (§7). App, RAN
resource monitors (§7.1, §7.2) profile the resource demands and

availability of network and compute stages, and deliver necessary

scheduling information to the per-GoP and per-frame schedulers.

Mutual awareness-enabling RIC (§7.3) enables the app and RAN

schedulers to exchange resource information without disclosing

their proprietary scheduling algorithms. For example, we hide app-

side e2e SLO, workload, and DNN inference latencies from RAN by

obscuring them into a single network SLO.

6
Time duration of an RB in RAN (e.g., 0.5 ms for 5G with 30 kHz sub-carrier spacing).
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(a) Network latency in subway
environment in §2.3.

(b) Compute workload
(MOT17 [48]-10 video).

Figure 8: Q-Q plot of network latency and workload against
normal distribution. Points aligning along the red line (𝑦 = 𝑥)
indicates that the two distributions are similar.

5 Per-GoP Scheduling
In this section, we detail ARMA’s per-GoP scheduling pipeline.

We first build online stochastic latency models to predict latency

distributions of network and compute stages over the next GoP

(§5.1). We leverage the models and RAN-informed network resource

availability to schedule {bitrate, DNN} configs to maximize overall

expected latency SLO satisfaction (§5.2). Lastly, we interleave large

keyframes across UEs to avoid network bottleneck (§5.3).

5.1 Online Stochastic Latency Modeling
Modeling unit. For each UE 𝑖 , we model network transmission

latency at 1 Mbps encoding bitrate (𝐿𝑖,1Mbps
) and workload (𝑛𝑖 ) as

independent Gaussian distributions as follows,

𝐿𝑖,1Mbps
∼ N(𝜇𝑖,1, 𝜎2

𝑖,1 ), 𝑛𝑖 ∼ N(𝜇𝑖,2, 𝜎2

𝑖,2 ) . (3)

The rationales behind our modeling are as follows.

• 𝐿
1Mbps.Network latency is determined as the frame size divided

by bandwidth. Video-encoded frame is composed of motion vec-

tors and residual data (i.e., difference between the predicted and

actual pixel values), where the residual typically dominates the

frame size (e.g., empirically >70% for H.264). As residual data

are by nature random signals, it can be modeled as Gaussian

distribution; for example, Shapiro-Wilk test [70] (used for vali-

dating whether a distribution is Gaussian) yields >0.96 score for

various videos (§8.1). Bandwidth remains stable within a short

GoP window (e.g., 1s) as channel fluctuations are mitigated by

the quantization in MCS mapping table (e.g., in 2 dB steps [9]).

Thus, network latency can be modeled as Gaussian. For example,

Q-Q plot (scatter plot of sorted values of the two distributions)

in Figure 8(a) shows that our measured latency distribution in

§2.3 are overall well-aligned with normal distribution (modeling

error handling for > 2𝜎 tail is detailed shortly).

• 𝒏𝒊 . Workload can also be modeled as Gaussian (Figure 8(b)),

characterized by mean (average scene complexity) and variance

(how fast objects newly appear and leave).

• Independence. We observe 𝐿
1Mbps

and 𝒏𝒊 mostly have low

correlation, as (i) scene content channel status are independent,

and (ii) albeit objects leaving and disappearing affects the size of

residual data, its impact is negligible than other scene changes

(e.g., lighting condition, object shape changes). For example,

Figure 9 shows that frame size and workload have a Pearson

correlation coefficient of only 0.02.

E2E latency modeling. Let 𝐿𝑖,𝑘 denote the e2e latency of the 𝑖-th

UE selecting using the 𝑘-th {bitrate, DNN} config {𝑏𝑘 , 𝑙𝑘 }. Using

Figure 9: Frame size and workload timeline example
(MOT17-10). Pearson correlation coefficient: 0.02.

the modeling units 𝐿𝑖,1Mbps
and 𝑛𝑖 , we model 𝐿𝑖,𝑘 as the sum of

network and compute latencies 𝐿𝑖,𝑛𝑒𝑡 and 𝐿𝑖,𝑐𝑜𝑚𝑝 as follows,

𝐿𝑖,𝑘 = 𝐿𝑖,𝑛𝑒𝑡 + 𝐿𝑖,𝑐𝑜𝑚𝑝 = 𝑏𝑘 · 𝐿𝑖,1Mbps
+ 𝑙0 + 𝑙𝑘 · 𝑛𝑖

∼ N
(
𝑏𝑘 · 𝜇𝑖,1 + 𝑙0 + 𝑙𝑘 · 𝜇𝑖,2, 𝑏2𝑘 · 𝜎2

𝑖,1 + 𝑙2𝑘𝜎
2

𝑖,2

)
,

(4)

where 𝑙0 is the detector inference latency. We model 𝐿𝑏Mbps
=

𝑏 ·𝐿
1Mbps

from two observations. First, frame size is linearly propor-

tional to encoding bitrate, as pixel quantization is a linear operation.

Second, transmission latency typically dominates frame latency; ini-

tial uplink grant delay is typically negligible, especially considering

recent proactive grant (pre-allocating UL resource before receiving

Buffer Status Report (BSR)) for mobile devices [91].
7

Model tracking at runtime. Latency models are updated per

each frame by monitoring the encoded frame size, RAN-monitored

bandwidth (§7.3), and the detected number of objects. We update

use Kalman filter [81] for parameter update, which is lightweight

and good at tracking time series data with Gaussian distributions.

Robustness to modeling errors. Modeling errors occur under

sudden bandwidth/scene changes (e.g., when a user abruptly ro-

tates their head to view a new scene). However, they often have

only a short impact (e.g., each inter-frame is typically encoded by

referencing only to the previous frame). Latency fluctuations from

these errors are mitigated by preemptive GPU scheduling (§6.3).

5.2 RAN-aware {Bitrate,DNN} Scheduler
Using the latency models in §5.1, our goal is to select {bitrate, DNN}

configs across UEs to maximize the expected overall latency SLO

satisfaction (i.e.,
∏

𝑖 𝑃 (𝐿𝑖,𝑘 ≤ 𝐿max)) while satisfying the network
and compute resource budgets. This is formulated as follows. As-

sume UE 𝑖 (= 1, ..., 𝑁 ) streams 𝑓 fps video with workload model

𝑛𝑖 and spectral efficiency 𝑅𝑖 (Mbps per RB), which is shared from

RAN (§7.3). UE 𝑖 has 𝐾𝑖 pareto-optimal accuracy-satisfying {bitrate,

DNN} configs 𝐶𝑖,𝑘 = {𝑏𝑖,𝑘 , 𝑙𝑖,𝑘 } from the accuracy profiler (§7.1.4),

where 𝑗 ∈ [1, 𝐾𝑖 ] and 𝑏𝑖,𝑘 and 𝑙𝑖,𝑘 are the encoding bitrates and

inference latencies of the DNNs, respectively. We find an allocation

𝐾∗ = {𝑘∗
1
, ..., 𝑘∗

𝑁
} for the next GoP which minimizes the overall

SLO satisfaction of 𝐿𝑖,𝑘 , by solving an one-step MPC problem
8

max

∏
𝑖 𝑃 (𝐿𝑖,𝑘 ≤ 𝐿max )

s.t.

∑
𝑖

(
𝑏𝑖,𝑘𝑖 /𝑅𝑖

)
≤ 𝑁𝑅𝐵∑

𝑖 mean(𝑛𝑖 ) · 𝑓 · 𝑙𝑖,𝑘𝑖 ≤ 𝑁𝐺𝑃𝑈 · 𝑇𝑢𝑡𝑖𝑙 ∀𝑖
(5)

7ARMA can also leverage the periodicity of video frames to reduce initial resource

grant delay, which we leave as future work.

8
Note that this yields the same solution as in conventional MPC with receding horizon

control (optimizing a sequence of actions over a window), as our video analytics

workload is GoP-wise independent.
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where 𝑁𝑅𝐵 and 𝑁𝐺𝑃𝑈 are the number of RBs in frequency axis per

each TTI and GPUs, and 𝑇𝑢𝑡𝑖𝑙 is the available GPU utilization time

per each second (1 for dedicated edge server). Constraints specify

that the average resource usage does not exceed the budgets.

Iterative probability gradient algorithm. Above scheduling is
a mixed integer programming problem (NP-Hard). We design an

iterative probability gradient algorithm that operates as follows. First,

it chooses (𝑏𝑖,𝑘 , 𝑙𝑖,𝑘 ) per each UE that maximizes 𝑃 (𝐿𝑖,𝑘 ≤ 𝐿max).
Then, it iteratively adjusts allocations if bottleneck occurs. For

example, if the sum of allocated bitrates exceeds the RAN’s RB

budget, we iteratively select the UE with the minimum probability
gradient and adjust its config by a step (in the direction of reducing

the bitrate and increasing the DNN) until the bottleneck resolves.

The probability gradient of UE 𝑖 (denoted as 𝑃𝐺𝑖 ) with the currently

selected config index 𝑘 is defined as the

𝑃𝐺𝑖 = |𝑃 (𝐿𝑖,𝑘 ≤ 𝐿max ) − 𝑃 (𝐿𝑖,𝑘+1 ≤ 𝐿max ) |, (6)

assuming {(𝑏𝑖, 𝑗 , 𝑙𝑖, 𝑗 )} is sorted in the ascending order of 𝑙 . This

lightweight heuristic efficiently finds an approximate solution in

𝑂 (𝑀𝑁 ) overhead for 𝑁 UEs with𝑀 candidate configs; for example,

it takes only <50 𝜇𝑠 for (𝑀, 𝑁 ) = (5, 100) in our testbed (§8.1).

5.3 Inter-UE Keyframe Interleaving
Keyframe (which appears once at the beginning of each GoP) is

encoded independently of others, and thus has higher size than

inter-frames with temporal encoding (e.g., 3-5×). We interleave

keyframe offsets across UEs to avoid network bottleneck caused by

simultaneous keyframe transmissions. We synchronize UEs’ video

capture timing and configure 𝑖-th UE’s keyframe offset 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑖 as

𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑖 = 𝑖 · ⌊ 𝑓 𝑝𝑠 ·𝐺𝑜𝑃/𝑁𝑈𝐸𝑠 ⌋, (7)

where 𝑓 𝑝𝑠 is frame rate (uniform across UEs) and 𝐺𝑜𝑃 is the GoP

size (s), and 𝑁𝑈𝐸𝑠 is the number of UEs.

6 Per-Frame Scheduling
In this section, we detail ARMA’s per-frame scheduling pipeline to

satisfy the e2e latency SLO given the selected {bitrate, DNN} configs

from per-GoP scheduler. App-aware SLO splitter first divides the
e2e latency SLO across network and compute stages (§6.1) for each

UE considering its expected latency distributions. App-aware RB

scheduler (§6.2) and deadline-aware GPU scheduler (§6.3) allocate

RBs and GPUs to satisfy the splitted SLOs.

6.1 Latency SLO Splitter
Upon each UE’s latency model update, we split the UE’s e2e latency

SLO 𝐿𝑚𝑎𝑥 into network and compute stage SLOs considering the

expected latency distributions. Assume that the 𝑖-th UE has latency

models𝐿𝑖,𝑛𝑒𝑡 ∼ N(𝜇𝑖,𝑛𝑒𝑡 , 𝜎2𝑖,𝑛𝑒𝑡 ) and𝐿𝑖,𝑐𝑜𝑚𝑝 ∼ N(𝜇𝑖,𝑐𝑜𝑚𝑝 , 𝜎
2

𝑖,𝑐𝑜𝑚𝑝
)

as a result of the {bitrate, DNN} scheduling decision. We split net-

work and compute latency SLOs 𝐿𝑚𝑎𝑥
𝑖,𝑛𝑒𝑡

and 𝐿𝑚𝑎𝑥
𝑖,𝑐𝑜𝑚𝑝

as follows,

𝐿𝑚𝑎𝑥
𝑖,𝑛𝑒𝑡

= 𝐿𝑚𝑎𝑥 − 𝜇𝑖,𝑐𝑜𝑚𝑝 − 𝑘 · 𝜎𝑖,𝑐𝑜𝑚𝑝 ,

𝐿𝑚𝑎𝑥
𝑖,𝑐𝑜𝑚𝑝

= 𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑎𝑥
𝑖,𝑛𝑒𝑡

.
(8)

Higher 𝑘 sets a more stringent network latency SLO to leave sched-

uling margin for unexpected workload increase, but may potentially

hurt the RAN’s throughput as RBs may be allocated to the UE even

under bad channel. We empirically set 𝑘 as 1.64, which corresponds

to the 95% cumulative probability in the Gaussian distribution.

(a) Existing app-agnostic RB scheduling.

(b) ARMA’s app-aware RB scheduling.

Figure 10: App-agnostic vs. -aware RB scheduling for 3 UE
scenario. Leveraging frame size and workload information
(highlighted as green), app-aware RB scheduling can priori-
tize UE2 to improve latency SLO satisfaction.

6.2 App-aware RB Scheduler
App-aware RB scheduler allocates RBs across UEs to stream their

encoded frames to the server within the splitted network SLO.

Figure 10 shows a three-UE scenario illustrating the benefit of

app-awareness. Consider three UEs with different frame sizes (e.g.,
intra- or inter-predicted) and compute workloads. App-agnostic

scheduling (e.g., TTI-level proportional fairness) results in a long

makespan and SLO violation due to the ignorance on the frame size

and workload (Figure 10(a)). Conversely, app-aware RB scheduling

can prioritize latency-stringent UE 2 first, and reduce makespan by

allocating RBs based on the granularity of app-layer frames.

Despite the opportunities, app-aware RB scheduling incurs non-

trivial challenges. (i) Conflicting goals. Simply prioritizing UE with

the most urgent latency deadline can hurt RAN resource efficiency,

as it may not always be experiencing the best channel (Figure 4). (ii)

Fairness. Prioritizing latency-critical Video Analytics (VA) UEs may

hurt fairness with non-VA UEs. Few recent studies designed app-

aware RB schedulers [9, 16, 44, 85, 97], but they mostly guarantee

average throughput or minimize flow completion time and do not

consider latency SLO satisfaction (§10).

We design a hierarchical two-stage scheduler to tackle the chal-

lenges. First, the outer scheduler allocates RBs across the VA and

non-VA UE groups same as the PF scheduler The inner scheduler

opportunistically reassigns RBs within the VA group to optimize

latency SLO satisfaction without significantly impacting the outer

scheduler’s decision. Algorithm 1 shows the scheduling algorithm.

The scheduler is triggered per each TTI. For each RB, we first cal-

culate the PF coefficients of all UEs, and selects the UE with the

maximum value (lines 2-4). If the selected UE 𝑢∗ belongs to non-VA
UE group, the RB is allocated directly allocated to it (lines 5-6). If

otherwise, the inner scheduler identifies a sub-group of UEs who

have similar PF coefficient (within 1-𝜖 range) with 𝑢∗ (line 8), and
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Algorithm 1 Hierarchical RB scheduler

1: procedure RB Scheduling():

2: for each RB 𝑏 do
3: calculate PF coefficient 𝑝𝑢,𝑏 per each UE 𝑢

4: select UE 𝑢∗
with the highest PF coefficient 𝑝∗

𝑢,𝑏

5: if 𝑢∗ ∈ non-VA UEs then
6: allocate 𝑏 to 𝑢∗

7: else if 𝑢∗ ∈ VA UEs then
8: find VA UEs𝑈 ′

s.t. 𝑝𝑢,𝑏 ≥ (1 − 𝜖 ) · 𝑝∗
𝑢,𝑏

9: select UE 𝑢∗∗ ∈ 𝑈 ′
with maximum latency utility𝑉𝑢 ,

10: allocate 𝑏 to 𝑢∗∗

allocating the RB to a UE with the maximum latency utility 𝑉𝑢
(lines 9-10) which is defined as,

𝑉𝑢 = 𝑅𝑢,𝑏 · (𝐹𝑢/𝐵𝑢 )𝛼 /(max(𝐷𝑢 , 𝛿 ) )𝛽 , (9)

where𝑅𝑢,𝑏 is UE𝑢’s spectral efficiency for RB𝑏, 𝐹𝑢 and 𝐵𝑢 are frame

size and remaining data size in buffer, 𝐷𝑢 is the time remaining

until the latency deadline (𝛿 is a small constant to avoid negative

values when latency exceeds deadline). This prioritizes UE with (i)

favorable channel status, (ii) frame transmission almost finished

(𝐵𝑢 ≈ 0), and (iii) close deadline.

Scheduling overhead. Our hierarchical RB scheduling requires

one additional iteration across VA UEs to track the latency utility.

This keeps the scheduling complexity at 𝑂 (𝑁 ) for 𝑁 UEs which is

the same as the original PF scheduler. It also incurs negligible CPU

and memory overhead (§8.3.3).

Coexistence with non-VA UEs. Higher 𝜖 increases the chance
that the inner scheduler selects another VA UE 𝑖′ with higher 𝑉𝑖′

instead of VA UE 𝑖 with the highest PF coefficient. As UE 𝑖′ is
likely to have the highest coefficient in the next TTI (assuming the

channel status remains similar), it may temporarily affect fairness

with non-VA UEs; however, average throughput is less affected, as

non-VA UEs take more proportion after VA UEs finish their frames.

We empirically set 𝜖 as 0.2 based on our evaluation, which imposes

a negligible drop in fairness of non-VA UEs (§8.3.2).

6.3 Deadline-aware GPU Scheduler
Finally, GPU scheduler grants GPUs to UEs to complete the infer-

ence requests within the e2e latency SLO. To guarantee latency

under resource estimation errors (e.g., due to sudden drop in band-

width or increase in workload), it incorporates a video analytics-

aware, object-level preemption mechanism. It allows the scheduler

to prioritize a UE’s frame that needs more GPU resources than pre-

dicted by temporarily pausing the processing of other UEs’ frames

that need fewer resources than expected.

Basic operation. There are two schedulers: inter-GPU and intra-
GPU. When a new frame arrives, inter-GPU scheduler forwards it

to a GPU with the least load in its queue. For each GPU, intra-GPU

scheduler chooses a frame with the least slack time (i.e., minimum

margin until the deadline after DNN inference) for processing.

Object-level preemptionmechanism.When the intra-GPU sched-

uler detects a frame request whose deadline cannot be met, it

searches for opportunities to offload the excess object recognition

inference to other GPUs. Specifically, we determine that a GPU 𝑔

can be preempted by a margin 𝛿 if all frame requests in its queue

𝑄𝑔 can be delayed by 𝛿 without missing their deadlines. It iterates

over all GPUs to calculate the sum of the margins and preempts

the GPUs if a set of GPUs capable of handling the excess inference

workload is found. Otherwise, we drop the frame and interpolate

its inference results with the most recent one from the correspond-

ing UE. For this, each intra-GPU scheduler manages a preemptive

inference queue, which are processed with higher priority than

normal frame requests from the inter-GPU scheduler.

7 Mutually-aware Resource Monitoring
In this section, we detail components to gather scheduling infor-

mation for ARMA’s mutually-aware decoupled scheduling in §5

and §6. Specifically, app and RAN resource monitors (§7.1, §7.2)

profile resource demands and availability for the video streaming

and DNN inference stages, and exchange the information through

mutual awareness-enabling RIC (§7.3).

7.1 App Resource Monitor
7.1.1 Network Demand Monitor
Network demand monitor notifies UEs’ frame sizes to the RAN for

app-aware RB scheduling. For this, each UE sends its encoded frame

size in the app packet header prior to frame transmission, which is

forwarded to the RAN. This approach does not require frame size

prediction process as in Tutti [85] (which incurs estimation error

and overhead), but incurs a notification delay: RAN does not know

the frame size until the app header arrives (e.g., ≈ 𝑅𝑇𝑇 /2=5-15 ms).

We mitigate this by also notifying the RAN which frame type to

expect next (§7.3), so that the RAN roughly estimates the incoming

frame’s size from its type before receiving the actual value.

Cross-layer traffic conversion. For each UE, the server converts

its app layer frame size 𝐹𝐴𝑝𝑝 to PHY layer size 𝐹𝑃𝐻𝑌 as follows,

𝐹𝑃𝐻𝑌 = (𝐹𝐴𝑃𝑃 + ℎ) · (1 + 𝜖 ), (10)

where ℎ is app layer packet header size, 𝜖 is the transport to phys-

ical layer protocol overhead (0.068 for 5G [84] assuming no re-

transmission). For each UE’s frame with size 𝐹𝑃𝐻𝑌 , RAN tracks the

amount of data size remaining for transmission 𝐹𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 as

𝐹𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 = 𝐹𝑃𝐻𝑌 −
∑︁𝑡𝑛𝑜𝑤

𝑡=𝑡𝑠𝑡𝑎𝑟𝑡
𝑇𝐵𝑆𝑡 · (1 −𝑂𝐻 ), (11)

where 𝑡𝑠𝑡𝑎𝑟𝑡 is the frame capture time, 𝑇𝐵𝑆𝑡 is the allocated Trans-

port Block Size (TBS) at time 𝑡 (determined by the number of allo-

cated RBs and MCS), and 𝑂𝐻 is the physical layer overhead (e.g.,

0.08 for UL in the FR1 frequency range [3]).

7.1.2 Compute Demand Monitor
DNN inference latency. The inference latencies of all candidate
DNNs are profiled offline, stored as a look-up table, and updated

online upon each inference completion. To improve latency pre-

dictability, we make the following two system assumptions. (i) We

do not use multithreading within each GPU to avoid tail latency

increase (which could be as high as ≈100× [32]). (ii) We assume

that all DNNs are loaded onto the GPU in advance, considering

practical GPU memory sizes (e.g., 48 GB for RTX A6000 vs. 4.9

GB for ResNet 18-152 weights and features with batch size 8). We

discuss the generality and limitations of these assumptions in §9.2.

Workload. The number of objects per frame is also tracked to

compute the latency modeling and prediction (§5.1).
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struct frame_info{
int UE_id
int frame_id;
int frame_size;
int64_t deadline;
uint8_t keyframe_interval;
uint8_t keyframe_offset;

};

Figure 11: App→RAN RIC in-
terface.

struct RB_sched_info{
int N_total_RBs;
vector<ue_stats> stat;

};
struct ue_stats{

double TBS;
int num_RBs;

};

Figure 12: RAN→App RIC
interface.

7.1.3 Compute Availability Monitor
Compute availability monitoring is simplified in our single, dedi-

cated edge server deployment model. However, GPU availability

must be monitored in runtime for real deployment scenarios with

competing background tasks (§9.2).

7.1.4 {Bitrate, DNN} Accuracy Profiler
Accuracy profiler provides the config scheduler (§5.2), which {bi-

trate, DNN} configs satisfy the accuracy requirements for each UE.

As the accuracy-satisfying configs change over time due to dynamic

scene content, online profiling is required. We leverage prior works

for low-overhead profiling, composed of (i) lightweight scene change
detector [38, 50, 52] to trigger profiling only upon significant con-

tent change, and (ii) config accuracy interpolator [40] which profiles

each bitrate, DNN value axis with the remaining config value fixed,

and interpolate the accuracies of the remaining configs.

7.2 RAN Resource Monitor
The RAN resource monitor’s goal is to provide the app scheduler

with an accurate estimate of UEs’ bandwidth capacities (i.e., how
much the bitrates can be increased by using additional RBs). For

this, two information are required: (i) how many RBs are available,

and (ii) how much throughput each UE can achieve per each allo-

cated RB. These cannot be achieved from conventional packet size

and arrival timestamp-based bandwidth estimation in video stream-

ing/analytics systems likeWebRTC [13, 100], whose primary goal is

conservatively reducing the bitrate to avoid congestion (as opposed

to ARMA’s bitrate-DNN interplay which increases bitrate by lever-

aging surplus RBs when workload is high). Figure 5 illustrates this:

estimating a UE’s bandwidth as frame size divided by reception time

(𝐹𝑛/𝑇𝑅𝑋 ) suffers from two problems: (i) it cannot estimate per-RB

TBS, and (ii) it cannot know the remaining idle RBs, which could be

additionally used within the latency SLO. Consequently, it results in

a severe underestimation of each UE’s maximum selectable bitrate.

To overcome the limitation, we monitor (i) the total number of

RBs, and (ii) number of allocated RBs per UE and achieved TBS to

improve bandwidth estimation accuracy as shown in Figure 5(b).

Using this, we calculate UE 𝑖’s app layer spectral efficiency using

cross-layer traffic conversion similar to Equations (10) and (11).

7.3 Mutual awareness-enabling RIC
RAN and server mutually exchange monitored resource informa-

tion (§7.1, §7.2) and scheduling decisions (e.g., latency deadline §6.1)
over RIC. ARMA’s RIC is implemented atop EdgeRIC [45], a real

time co-located on the Distributed Unit (DU) of RAN for <1 ms

monitoring/control delay. The app-RAN message exchange inter-

faces are implemented using O-RAN E2 [24]’s service models (SMs),

Table 2: Evaluation datasets.

# Videos Camera Content Workload (𝜇 ± 𝜎) Mobility

MOT [48] 5 CCTV Street 18.3±8.5 Static

BDD [96] 10 Dashcam Driving 13.3±8.2 Driving

YTFace [82] 6 Mobile Street 32.3±25.7 Walking

(a) Uplink SINR. (b) Workload.

Figure 13: Uplink SINR and workload trace samples.

which defines functionalities to monitor/control RAN. Specifically,

we build our interfaces atop KPM (Key Performance Metric) [46]

and RC (RAN Control) [68] SMs.

App→RAN. Each UE’s frame size, index information (to estimate

next frame size until the information arrives), and transmission

deadline are shared from server to RAN using message format in

Figure 11. It does not reveal any app information (i.e., e2e latency
SLO, DNN inference latency, and GPU scheduling algorithm) as

they are all obscured as a single network latency deadline value.

RAN→App. Total number of RBs and UEs’ spectral efficiencies

(required for {bitrate, DNN} scheduling in §5.2) are shared to the

server using message format in Figure 12. It discloses only the RB

scheduling results (# RBs and achieved TBS), hiding channel state

estimation, MCS selection, and RB scheduling algorithms.

8 Evaluation
8.1 Setup
Over-the-air testbed.We evaluate ARMA on a 5G RAN-enabled

edge testbed (Figure 14). It consists of a commodity desktop equipped

with Intel i9 CPUwhere we run srsRAN-5G [72] for BS, and a server

(located in the same building) equipped with Intel Xeon Gold 5128

CPU and 8× RTX 2080 Ti GPUs to run video analytics apps. As an

RF frontend, we use USRP X310 (TDD n78 band with 5DDDSU and

single MIMO layer following [31, 44]) with Precision GPS Reference

Clock [30] connected to the BS. For UEs, we use Google Pixel 6a

smartphones with programmable SIM cards (sysmoISIM-SJA2) [76].

We modify EdgeRIC [45] to support ARMA’s mutual awareness-

enabling RIC (§7.3). We use H.264 in FFmpeg [25] 4.1.9 for video

encoding and secure reliable transport (SRT) [74] for streaming.

For DNN inference, we use PyTorch 1.10.1 [67] C++ API.

Trace-driven simulator. For repeatable experiments with more

UEs, we use srsRAN-5G RF simulator [73], which is implemented

using ZeroMQ [99] and GNURadio [29] to emulate wireless commu-

nication channel. We generate UL SINR trace using 3GPP channel

model [2] for various UE-BS distance and mobility scenarios (static,

walking at 1.4 m/s, driving at 35-90 km/h) as shown in Figure 13(a).

Video datasets and DNNs.We evaluate ARMA using multi-object

tracking datasets with various scene complexity and change speed
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Figure 14:MEC testbed im-
plementation.

Figure 15: End-to-end latency
comparison with baselines.

Figure 16: Latency breakdown (box: 25-75%, error bar: 0-95%).

as shown in Table 2 and Figure 13(b). We sample different number of

UEs (4–10) across datasets to create multi-UE scenarios. For DNNs,

we use YOLOv8n detector and ResNet 18-152 [34] classifiers.

Baselines. Static uses static {bitrate, DNN} config and the PF

scheduler in srsRAN-5G. LiteReconfig (LR) [87] is an app-only

scheduling baseline which adapts DNN configs (with static bitrate)

based on predicted scene content difficulty (e.g., # objects, bounding
box sizes and confidences). AWStream (AWS) [100] adapts bitrate
configs (with static DNN) based on the available network band-

width. VideoEdge (VE) [40] adapts {bitrate,DNN} config based on

RAN-agnostic network bandwidth prediction and average compute

workload, without latency modeling. Tutti [85] is a RAN-only

scheduling baseline which adjusts UEs’ priorities based on their

predicted frame sizes and network latency deadlines (set as half of

the e2e SLO). Decoupled (DC) runs VideoEdge [40] and Tutti [85]

separately without mutual awareness (i.e., no RAN-aware band-

width estimation and latency SLO splitting). It also runs round robin

GPU scheduler, as opposed to ARMA’s deadline-aware scheduler.

8.2 System Macrobenchmarks
8.2.1 End-to-end Latency and Accuracy
End-to-end latency comparison. Figure 15 compares the e2e

latency of ARMA and baselines for 4 UE scenario in the over-the-air

testbed. Overall, ARMA achieves significantly higher latency SLO

satisfaction rate (97.2%, which is up to 48.6% higher than Tutti).
Detailed analysis on the performance gain is as follows. First, Tutti
suffers from low SLO satisfaction rate as analyzed in §2.4, mainly as

it does not reduce UEs’ bitrates under bad channel and suffers from

low spectral efficiency. AWStream improves this by adapting the

bitrate, but achieves minimal latency gain as it (i) cannot drastically

reduce bitrate as it incurs inference accuracy drop, and (ii) cannot

handle compute latency increase from workload fluctuation. Simi-

larly, LiteReconfig suffers from high latency as it only adapts the

DNN config. VideoEdge and Decoupled improve this by leverag-

ing bitrate-DNN interplay. However, they still suffer from long tail

latency due to two reasons. First, they cannot cope with per-frame

fluctuations as they estimate resources by average, and do not have

Figure 17: Streaming accu-
racy comparison.

Figure 18: Latency for vary-
ing number of UEs.

(a) Network latency. (b) Compute workload.

Figure 19: Stochastic latency modeling accuracy.

deadline-aware per-frame scheduling mechanisms on both network

and compute stages. Second, RAN-agnostic bandwidth estimation

leads to inaccurate estimation of the surplus bandwidth capacity

(§7.2), thus missing the opportunity to increase bitrate and reduce

DNN complexity under high workload. ARMA overcomes these

limitations and achieves 97% SLO satisfaction. ARMA also achieves

better tail latency and latency jitter (i.e., difference between consec-

utive frames) performance compared to baselines: for example, it

reduces the 95-th percentile latency from 193.80 ms (VideoEdge) to
138.81 ms, and average latency jitter from 30.23 (Tutti) to 17.20 ms.

Latency breakdown. Figure 16 shows that ARMA achieves latency

improvements over baselines on both network and compute stages.

As analyzed above, Tutti, AWStream, LiteReconfig achieves la-

tency gains only on a single stage. VideoEdge and Decoupled
improve latencies on both stages, but suffer from long tail latency

due to mutual ignorance of the app, RAN schedulers.

Accuracy comparison. Figure 17 compares the streaming accu-

racy [49] (i.e., accuracy of the analysis result compared to the latest

frame available at its finish) from the obtained latencies, in terms

of bounding box IoU (Intersection over Union). Box plot represents

5-100-th accuracies. It shows that ARMA’s high latency SLO satis-

faction leads to robust tail accuracy (e.g., 0.56 vs. 0.63 vs. 0.68 for
Tutti, DC, ARMA, respectively).

8.2.2 Scalability
Figure 18 shows that ARMA consistently achieves lower latency

than Decoupled as the number of UEs increase. Especially, the

tail latency of Decoupled increases significantly (e.g., 95-th latency

increasing from 210.7 to 339.7 ms for 4 UEs and 8 UEs), while ARMA
keeps it low (e.g., 339.7 vs. 193.5 ms for 8 UEs) due to RAN-aware

{bitrate, DNN} selection and deadline-aware per-frame schedulers.

8.3 System Microbenchmarks
8.3.1 Per-GoP Scheduler
Stochastic latency modeling accuracy. Figure 19(a) shows the
20 Mbps streaming latency and predicted values with our latency
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(a) {Bitrate,DNN} scheduler. (b) Latency SLO splitter.

Figure 20: ARMA scheduler microbenchmark (box: 25-75%,
error bar: 0-95% range).

Figure 21: App-aware RB scheduler performance with
non-VA file transfer UEs.

model for subway in Table 1. Our modeling achieves 6.37 ms Mean

Absolute Error (MAE), with 93.56% of the latencies within 2𝜎 range.

Figure 19(b) also shows the modeled workload on YTFace video.

MAE and 99-th error are 1.89 objects and 7.01 objects, respectively.

Under sudden scene change, modeling error increases sharply; how-

ever, the model quickly adapts and reduces the prediction error.

{Bitrate,DNN} selection accuracy. Figure 20(a) compares ARMA’s
latency for 5 UE scenario using three policies: static, per-UE op-

timal, and iterative probability gradient. Static uses heavy DNN

backbones, which incurs long inference latency and low latency

SLO satisfaction rate (only 49%). Per-UE optimal reduces the aver-

age latency (e.g., 75-th 182.4 vs. 160.2 ms) by reducing backbone

and increasing bitrates, but does not effectively reduce the tail, as

all UEs increasing the bitrates incurs network bottleneck. Iterative

probability gradient algorithm adjusts the configs across UEs to

reduce both the average and tail latencies (e.g., 95-th 148.3 ms).

8.3.2 Per-frame Scheduler
App-aware latency SLO splitter. Figure 20(b) compares ARMA’s
latencies with various SLO splitting policies: static (1:1), dynamic

(proportional to the average predicted latencies), and dynamic

(Eq. (8), using both means and variances). As network, compute

stage latencies fluctuate over time, latencymodeling-based dynamic

splitting improves latency SLO satisfaction from 90.9 to 95.2%.

App-awareRB scheduler.Weevaluate the performance ofARMA’s
app-aware RB scheduler for various 𝜖 . We use two types of non-VA

UEs: file transfer (emulated using Iperf) and web uploading (emu-

lated by sending 20 KB buffer over TCP socket in random intervals

sampled from Poisson distribution). (i) File transfer UE throughput.
Figure 21 shows the throughput for 5 UE scenario: 2 VA UEs and 3

non-VA UEs. Higher 𝜖 increases the latency SLO satisfaction rate

for VA UEs, at the cost of throughput drop for non-VA UEs (e.g.,
for 𝜖=0.2, 93% latency SLO satisfaction with 6.5% throughput drop).

The effect of increasing 𝜖 on SLO satisfaction rate saturates, as

aggressively allocating RBs to VA UEs despite bad channel status

Figure 22: App-aware RB
scheduler performance with
non-VA web uploading UEs.

Figure 23: ARMA schedulers’
CPU overhead for varying
number of UEs.

Table 3: App-aware RB scheduler memory overhead.

Component Memory (per UE)

PF scheduler
𝑢𝑒 908 bytes

𝑢𝑒_𝑐𝑡𝑥𝑡 96 bytes

𝑢𝑒_ℎ𝑖𝑠𝑡𝑜𝑟𝑦_𝑑𝑏 104 bytes

ARMA overhead 𝑓 𝑟𝑎𝑚𝑒_𝑖𝑛𝑓 𝑜 (Figure 11) 22 bytes

Latency utility (Eq. (9)-𝑉𝑢 , 𝐵𝑢 ) 8 bytes

results in lower resource efficiency. (i)Web uploading UE latency.
Figure 22 compares web uploading UE latency for 5 UE scenario: 3

VA UEs and 2 non-VA UEs (error bars denote 0-95% range). Higher

𝜖 increases the latency of web UEs, especially the tail latency (e.g.,
41.73 ms for 𝜖=0.2 vs. 119.76 ms for 𝜖=0.8). VA UE latencies remain

similar, as the web UE traffic size is negligible.

8.3.3 System Overhead
CPU overhead.We measured the CPU utilization of BS and server

using Linux ps [66] in 4 UE scenario. Compared to Static, ARMA
incurs 0.4% higher CPU utilization for BS (e.g., 5.2% vs. 5.6%) and 5%

higher overhead for server, mainly due to scheduling logic and RIC.

Figure 23 shows the scheduling CPU overhead for varying number

of UEs; due to connection failure issue in srsRAN RF simulator for

>10 UEs, we run the scheduling algorithms separately to measure

the overhead. Overall, ARMA’s app, RAN schedulers incur minimal

overhead (e.g., 1.27% and 4.43% for 80 UEs). As analyzed in §6.2,

ARMA’s RB scheduler has the same 𝑂 (𝑁 ) complexity has PF, thus

adding negligible overhead (e.g., 4.15% vs. 4.43% for 80 UEs).

Memory overhead. Table 3 shows the memory overhead to imple-

ment ARMA’s app-aware RB scheduler. For each UE, it incurs only

34 bytes overhead (3% of memory required in srsRAN’s PF sched-

uler - ul_sched() function in scheduler_time_pf.cpp). We observed

that latency overhead of one addition iteration over UEs required

to calculate latency utility (Algorithm 1) is negligible.

RIC communication overhead. Mutual awareness-enabling RIC

incurs minimal communication overhead and delay in both both

directions. Specifically, app→RAN signaling (Figure 11) incurs 22

bytes overhead per each UE’s frame, and RAN→app signaling (Fig-

ure 12) incurs 28+12·𝑁 bytes for 𝑁 UEs.

9 Discussion and Future Work
9.1 Generality
Generality to VLM-based video analytics. While ARMA cur-

rently focuses on two-stage CNN inference pipeline, its app-RAN

joint scheduling can be extended to handle workload fluctuation in
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recent Vision Language Model (VLM) [57, 102]-based pipelines as

well. Specifically, VLM encodes the input video frames and gener-

ates text response to the input query in an auto-regressive manner

(one word per iteration, until the ‘eos’ symbol). The total inference

latency of VLMs can be modeled as follows [56],

𝐿𝑐𝑜𝑚𝑝𝑢𝑡𝑒 = 𝑙𝑣𝑖𝑑𝑒𝑜_𝑒𝑛𝑐𝑜𝑑𝑒𝑟 + 𝑙𝑇𝑇𝐹𝑇 + 𝑁𝑤𝑜𝑟𝑑𝑠 · 𝑙𝑇𝑃𝑂𝑇 . (12)

𝑙𝑣𝑖𝑑𝑒𝑜_𝑒𝑛𝑐𝑜𝑑𝑒𝑟 is the video encoder latency, 𝑙𝑇𝑇𝐹𝑇 is the initial delay

until the first output token (time to first token, TTFT), 𝑙𝑇𝑃𝑂𝑇 is the

generation latency of each token (referred to as time per output to-

ken (TPOT) - 38 ms for Video-LLaMA-7B [102] on RTXA6000 GPU),

and 𝑁𝑤𝑜𝑟𝑑𝑠 is the response length. The inference latency fluctuates

with the scene content as 𝑁𝑤𝑜𝑟𝑑𝑠 increases proportionally to the

scene complexity, albeit the relationship may not be linear as in

CNNs (Equation (1)) and also varies depending on the query. We

leave ARMA’s latency model extension for VLMs as future work.

Generality to other apps. ARMA’s mutually-aware app-RAN

joint scheduling can be extended to various MEC apps involving

real-time data streaming and server compute processing. For ex-

ample, ARMA can be extended to response latency guarantee (e.g.,
within 200 ms [71]) in voice assistant apps composed of user voice

data streaming over RAN and speech recognition and question

answering in server. ARMA can also be used for frame latency guar-

antee in multi-user VR [61] to jointly schedule edge server GPUs

and RAN downlink RBs for frame rendering and streaming under

dynamic scene content and wireless channel status.

Generality to edge-cloud cooperative inference. ARMA cur-

rently assumes fully-offloaded inference as it is challenging to de-

ploy large DNNs on UE devices, and existing on-device inference

systems [36, 38, 39, 90, 93] mostly lack adaptation capabilities for

workload fluctuation. However, if local processing is available, edge-

cloud cooperative inference can further improve ARMA’s latency
performance. For instance, we can dynamically adjust the portion

of frame regions processed by UE and server considering the on-

device inference latency, estimated bandwidth and workload (e.g.,
increase on-device portion under high bandwidth fluctuation).

9.2 Limitations
Real-world deployment challenges.WhileARMA shows promis-

ing results, following challenges remain for real-world deployment.

• Handling cross-traffic scenario. ARMA assumes that each

UE only runs a dedicated single VA app (e.g., low-cost CCTV,
AR glasses). When a UE runs multiple apps concurrently, it can

lead to inaccurate bitrate control and network delay estimation

of the VA app. In such cases, we can differentiate and isolate the

VA app traffic flow by using a separate 5G Data Radio Bearer

(DRB) with its latency SLO specified by the 5G 5QI [1], which

can be handled separately by ARMA’s RB scheduler.

• Handling server resource availability fluctuation. ARMA
assumes a dedicated edge server for VAUEs, with fixed inference

latency and no model switching overhead (§7.1.2, §7.1.3). In case

background tasks run concurrently, a more advanced multi-GPU

scheduler is required to consider various factors that dynami-

cally affect compute resource availability, including inference

latency fluctuation from throttling and memory overhead from

context switching [32], and fairness with background tasks.

• Standard compliance.We implementARMA atop EdgeRIC [45],

which assumes an additional Real-Time (RT) RIC deployed in

the Distributed Unit (DU) alongside O-RAN’s near-RT RIC in

the Central Unit (CU). RIC architectures and interfaces for ms-

level RAN monitoring/control is actively being investigated in

the O-RAN community for standardization (e.g., dApps [19],
Microsoft’s programmable RAN with dynamic SM [23, 28]). We

plan to improve ARMA’s RIC for standard-compliant operation,

including handling UE handover across cells.

Co-designwith video codec.Keyframe size peaks remains amajor

source of latency SLO violation in ARMA. We plan to mitigate this

by extending our design to the video codec. For example, we can

consider dividing the frame in units of slices supported in H.264 and

H.265 [89] and interleaving the intra-encoded slice across frames.

10 Related Work
Live video analytics. A large body of works aimed at design-

ing live video analytics for various apps (e.g., monitoring [37, 40],

AR/MR [52, 92, 93]). Several optimization techniques were studied

to improve practicality, including adaptation [40, 83], continual

learning [10, 60], model merging [64], and privacy [12]. ARMA is

an e2e app-RAN joint scheduling system for improving latency

predictability of video analytics apps.

Resource adaptation in live video analytics. Several works
aimed at video content and network/compute resource-aware adap-

tation of video bitrate [11, 15, 22, 35, 42, 43, 50, 52, 65, 86, 100, 103],

DNN [5, 6, 17, 33, 47, 87, 88], or both [37, 40]. However, such app

schedulers operate in a mutually-agnostic manner with the RAN

scheduler, resulting in inaccurate network resource availability

estimation and latency fluctuation (§2.4).

App-aware RAN scheduling. OutRAN [44] aimed at RAN sched-

uling to minimize queueing delays of short flows (e.g., webpage
loading), but has not considered continuous video analytics work-

load. Tutti [85] also aims at app-aware RB scheduling, but only

optimizes network stage latency, and considers fixed-bitrate, per-

frame JPEG-encoding (small frame size variation). Other works

aimed at UEs’ demand and channel-aware RAN slicing to maximize

resource utilization and throughput [16, 26, 53, 54, 97]. They can

be complementarily used with ARMA to isolate live video analytics

UEs for efficient resource scheduling.

11 Conclusion
We presented ARMA, a live video analytics scheduling system for

high latency SLO satisfaction in MEC. To overcome the limita-

tions of prior works in handling complex latency fluctuations over

both the video streaming and DNN inference stages, we designed a

mutually-aware decoupled scheduling mechanism to foster collabo-

rative interaction between the two using real-time RIC. Evaluation

shows that ARMA achieves 97% SLO satisfaction rate.
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