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Abstract
Trends indicate that emerging SmartNICs, either from dif-

ferent vendors or generations from the same vendor, exhibit
substantial differences in hardware parallelism and memory
interconnects. These variations make porting programs across
NICs highly complex and time-consuming, requiring pro-
grammers to significantly refactor code for performance based
on each target NIC’s hardware characteristics.

We argue that an ideal SmartNIC compilation framework
should allow developers to write target-independent programs,
with the compiler automatically managing cross-NIC porting
and performance optimization. We present such a framework,
Alkali, that achieves this by (1) proposing a new intermediate
representation for building flexible compiler infrastructure
for multiple NIC targets and (2) developing a new iterative
parallelism optimization algorithm that automatically ports
and parallelizes the input programs based on the target NIC’s
hardware characteristics.

Experiments across a wide range of NIC applications
demonstrate that Alkali enables developers to easily write
portable, high-performance NIC programs. Our compiler op-
timization passes can automatically port these programs and
make them run efficiently across all targets, achieving perfor-
mance within 9.8% of hand-tuned expert implementations.

1 Introduction

SmartNICs [3, 11, 15, 33, 34, 36] have become a popular plat-
form for hosting various tasks in datacenters [5, 10]. They en-
hance traditional NICs by incorporating programmable com-
pute units, a memory hierarchy, and (in some cases) domain-
specific accelerators (e.g., crypto engine). These additional re-
sources enable the NICs to serve various functionalities, span-
ning network functions [10, 26], transport offloads [4, 50, 59],
and non-network infrastructure processing [19, 25]. Many
works have also offloaded application-specific computation
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onto the NICs (e.g., data analytics [29, 31], RPC orchestra-
tion [14, 28, 58] and serverless [7]).

However, despite growing popularity, effectively program-
ming SmartNICs remains challenging for two key reasons.
First, NIC architectures vary significantly, so each vendor
offers a custom language or SDKs tailored to its hardware ar-
chitecture. They only provide architecture-specific low-level
programming primitives, such as customized instruction sets
to access memory and accelerators. At the same time, NIC pro-
grams often involve complex processing logic, e.g., intricate
control flow and stateful computations. Implementing such
complex logic using vendor-provided low-level programming
primitives is challenging—it essentially requires developers
to have expertise with each vendor’s hardware.

Second, even if one can implement them, optimizing pro-
gram performance is challenging. The performance depends
on numerous factors, such as identifying ideal parallelism
and effectively using heterogeneous memory specific to a
target NIC. Developers must manually tweak programs based
on their understanding of detailed target-specific hardware
characteristics which is arduous and error-prone.

Trends indicate that SmartNICs from different vendors or
generations from the same vendor exhibit significant varia-
tions in hardware parallelism and memory interconnects to
cater to the diverse needs of cloud infrastructures, applica-
tions, and workloads. Thus, as datacenter operators upgrade or
change their NIC hardware the above challenges become even
more pronounced requiring not only (re)writing programs but
also (re)tuning performance for each new SmartNIC itera-
tion. Existing NIC programming frameworks, including P4
extensions and recent proposals [6,26,44,56] while extremely
valuable, are narrowly built for a single type of architecture –
thus, they do not offer the much-needed portability.

We present Alkali, a compilation framework enabling
portable and high-performance NIC programs. With Alkali,
developers use high-level languages (e.g., a subset of C)
to write a single-threaded, run-to-completion NIC program.
Then, our compiling toolchain transforms the program into an
optimized, pipeline- and data-parallel program aligned with



the target NIC’s hardware characteristics.
Our paper makes the following contributions to realize

Alkali and showcase its benefits:
• An IR targeted at SmartNICs: Inspired by existing com-
piler frameworks like LLVM [22] that recognize the impor-
tance of an intermediate representation (IR) for supporting
multiple targets, we design an IR called αIR aimed at Smart-
NICs, their architectural nuances and SmartNIC programs’
common structures. αIR generalizes and captures how the in-
herent parallelism in NIC programs’ computations and salient
aspects of their memory access patterns map across diverse
SmartNICs. To this end, αIR uses the stateful parallel network
handler graph abstraction (§4).
• A two-phase iterative algorithm for parallelism optimiza-
tions: Translating the αIR into parallel code that optimally
leverages the underlying hardware is challenging. This is due
to the large space of potential parallelization – e.g., the many
ways of splitting NIC programs into pipeline stages, repli-
cation options per stage, possible mappings between repli-
cas/stages and compute units, and placements of different
replicas’/stages’ state onto the target’s memory hierarchy. To
efficiently navigate the space and identify good parallelization
plans, we model the problem as a two-phase iterative opti-
mization (§5). The first identifies suitable pipeline stages via a
novel weighted min-cut formulation to determine the places to
partition programs (in αIR) into pipeline stages. The second
employs an SMT solver alongside a simple NIC performance
model to determine the number of replicas of each stage and
the placement of replicas and state (onto compute cores and
memory layers, respectively) to maximize performance.
• Open-source prototype: We present a full end-to-end im-
plementation of the Alkali compiler toolchain including a
C frontend, a mid-end, and multiple backends that support
four types of NIC targets–on-path SoC NICs (Agilio [36]),
off-path SoC NICs (BlueField-2 [34]), FPGA NICs [3], and
specialized ASIC SmartNICs (PANIC [30]). We open-source
the prototype [2].

Our evaluation using a wide range of NIC applications
demonstrates that our framework enables developers to easily
write portable, high-performance NIC programs. The com-
piled programs run efficiently across different NIC targets -
their performance is competitive with experts’ implementa-
tions, showing less than a 9.8% gap.

2 Background and Motivation

SmartNICs can be viewed generally as comprising a subset of
three types of components: (1) programmable compute units,
(2) a memory hierarchy, and (3) reconfigurable match-action
table (RMT) pipelines. Of these, RMT pipelines have received
substantial attention from a programming point of view, with
P4 [55] being a framework ideally suited to it, with important
P4-based NIC programs already used in many production
settings today [24, 27, 42, 57].

The architecture of the remaining “non-RMT” compo-
nents has significant heterogeneity (Figure 1): (1) Pro-
grammable compute units have substantial differences in
micro-architecture and degrees of parallelism. For instance,
the BlueField-2 DPU has 8 ARM cores, while Agilio boasts
48 micro-engines, Pensando’s Elba contains 256 MPUs, and
FPGAs can have hundreds of hardware modules running in
parallel; (2) Memory hierarchies have distinct sharing scopes,
sizes, and access latency. For example, Agilio has CAM, CLS,
CTM, and EMEM [37], Elba has SRAM and TCAM [11],
while FPGAs have SRAM, BRAM, and DRAM [3]. They are
software-managed, non-coherent, and require careful selec-
tion for placing stateful program objects.

2.1 NIC Programming Challenges

Programmability is a key driving factor of the broader adop-
tion of SmartNICs. However, programming today’s Smart-
NICs remains arduous and time-consuming. First, the NICs’
hardware complexity and low-level programming interfaces
create a steep learning curve. Second, hardware heterogeneity
exacerbates the challenge, making programming and learning
efforts non-portable across different NICs.

2.1.1 Target-specific Primitives

NIC vendors today provide a language and toolchain tailored
to their NIC. For example, developers use Verilog for FPGA
NICs, DOCA SDK for BlueField-2 [38], Micro-C (a subset
of C++ with the vendor-provided library) for Agilio [37], and
a mixture of customized P4 with hand-coded assembly for
Elba [11]. They offer low-level target-specific primitives that
are tightly coupled with the NIC architecture. For example,
when writing the network transport offload (Flextoe [50]) on
Agilio (the program logic shown in Figure 2), developers
need to break down a sequence of packet processing tasks
into fine-grained micro threads and determine how to replicate
and map these micro threads onto 48 micro engines across
4 compute islands [37, 50]. Then, since the transport offload
maintains a flow table, developers need to explicitly define
which memory layer this table’s content is placed in using the
customized C++ macro (e.g., __declspec(emem)). A similar
tedious programming process is needed for FPGA NICs [26]
and Elba NICs [5].

2.1.2 Lack of Portability

Portability between different NIC targets is essential for reduc-
ing vendor lock-in and allowing network operators to switch
between NIC targets as workloads evolve. However, today,
developers must follow a two-step transformation process
to adapt architecture-dependent low-level programs across
different NICs, making portability challenging.
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Figure 1: An abstract view of different SmartNICs’ architecture.
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Figure 2: FlexTOE’s packet processing flow graph [50].
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Figure 3: Different parallelism influences FlexTOE [50]’s performance
on different arch. Using 16 connections with 256B packets.

Step 1: Translate primitives. Developers must resolve the
impedance mismatch between different NICs’ low-level hard-
ware primitives. For example, the Figure 2’s packet processing
logic will be implemented as a thread on an ARM core on
BlueField-2, whereas on FPGAs, it will be implemented using
combinational and sequential logic on LUTs. Similarly, the
flow table can be implemented in CAM on Agilio but will
be implemented as a hash table on BlueField-2 due to the
lack of CAM hardware support. When performing primitive
translation, developers need to find primitives that provide the
same or equivalent functionality. Such translation may not
always exist because of target-specific functional constraints
(e.g., supported accelerators and hardware interfaces).

Step 2: Refactoring. Developers also need to significantly
refactor and re-optimize their code to make it run fast based
on the target NIC’s hardware characteristics:
(1) Change code parallelism. SmartNICs are designed with
extensive hardware parallelism, making them ideal for highly
parallel network tasks. NIC programs usually leverage two
forms of parallelism: data parallelism, where the same code
block runs across multiple compute units with packets or
flows distributed via RSS [35], and pipeline parallelism, where
the code is divided into stages that communicate in a pipelined
fashion. The optimal parallelism strategy varies across NICs,
requiring developers to adjust the code’s parallelism when

porting. This involves determining (1) the number of pipeline
stages and (2) how many replicas to use per stage.

To illustrate the need for such refactoring, we implemented
FlexToe [50] in Figure 2 on three platforms - BlueField-2,
Agilio, and FPGA - using two approaches: (1) a non-pipelined
data parallel-only version, where the entire program is repli-
cated across all compute units and packets are steered to
compute units using flow steering, and (2) pipelined versions,
where the program is divided into stages, and each stage is
replicated independently.

Figure 3a shows that the optimal number of pipeline stages
varies by architecture. On Agilio and FPGA, three pipeline
stages yield the best performance, while on BlueField-2, the
non-pipelined version performs better. These differences arise
because Agilio and FPGA both (1) have more compute units,
allowing pipeline stages to fully utilize available units when
the active flow number limits data parallelism; (2) have spe-
cialized hardware queues to reduce the communication over-
head between pipeline stages, and (3) are more sensitive to
data locality - memory access latencies vary more across their
memory layers, and pipelining helps improve locality.

Figure 3b shows that with pipeline parallelism, developers
must also optimize the number of replicas per stage. For exam-
ple, on Agilio, replicating a three-stage pipeline to optimally
occupy its 48 micro-engines boosts performance up to 3.7×.
(2) Change state mapping. Many NICs [3,11,36] come with
a memory hierarchy, and developers must select the appro-
priate memory level for storing states. This includes analyz-
ing each program state’s size and access patterns to place
frequently accessed states in faster, lower-capacity memory
layers. For example, our experiments showed that placing
Figure 2’s flow table into the fastest memory layer (CAM)
resulted in an over 8× throughput improvement compared
with placement in the slowest layer (EMEM).

2.2 Limitation of Existing Frameworks

An ideal SmartNIC programming framework should allow
developers to write target-independent programs and let the
compiler automatically port these programs across various
NICs. However, existing frameworks [26, 44, 45, 56] fail to
achieve this for the following reasons:

(1) Non-reusable compiler infrastructure and optimiza-
tions: Existing frameworks are usually only narrowly built
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for a specific NIC. For instance, Floem [44] is built for on-
path SoC NICs; ClickNP, and Flowblaze [26,45] target FPGA
NICs; P4 and its backend compilers [41, 56] target RMT-like
SmartNICs. Compiler optimizations in these frameworks are
often not reusable across different NICs. For example, P4
backend compilers’ optimizations focus on packing resources
into constrained, fixed, line-rate RMT-like pipelines but lack
performance-oriented optimizations such as pipeline stage
replication and state mapping, which are crucial for SoC and
FPGA NICs as shown in Figure 3.

(2) Lack of automatic parallelization: These compilers
still require developers to manually define the degree of
parallelism and cannot automatically change the program’s
pipeline/data parallelism degree when compiling programs
to different NICs. For example, Floem requires developers
to determine the program’s pipeline stages and replication
counts and rewrite the program when porting to another SoC
NIC with different core counts.

These limitations stem from the tight coupling of programs
and optimizations to specific NIC targets, which restricts
portability across different architectures.

3 Alkali Overview

Overcoming the above limitations requires decoupling NIC
programs (written in various languages) from a specific NIC
architecture. Drawing inspiration from the role of intermedi-
ate representations (IR) in conventional software compilers,
which bridge high-level code and architecture-specific im-
plementations, we introduce αIR, a new IR tailored for NIC
programming. αIR serves as a bridge between target-agnostic
NIC programs and target-specific code generation.

Building on αIR, we develop Alkali, a multi-target Smart-
NIC compilation framework that (1) allows developers to
write NIC programs in high-level languages, (2) uses αIR to
translate between languages and vendor-specific code seam-
lessly, and (3) employs novel compiler optimization tech-
niques to automatically port programs for high performance
across various targets.

Figure 4 illustrates the workflow of Alkali. First, devel-
opers import the target NIC’s architecture specification pro-
vided by NIC vendors, which specifies high-level architectural
functionality constraints of the target NIC. They then write
single-threaded, run-to-completion NIC programs (e.g., Fig-
ure 6a) using high-level languages (e.g., a subset of C). This

interface frees programmers from having to manage hard-
ware parallelism or memory hierarchies, enabling simpler and
more portable code. These input programs are parsed and
translated into αIR where the compiler performs paralleliza-
tion optimizations that transform the single-threaded program
into a highly optimized, pipeline- and data-parallel program
based on the target NIC’s characteristics. The parallelization
optimization is guided by a simple performance specification
provided by the NIC vendor. Finally, the backend takes the
optimized αIR program and generates target-specific code.

3.1 Design Challenges and Ideas
Here, we describe the main design challenges in Alkali:

C1: IR design. An IR for NICs must preserve the paral-
lelism inherent in NIC programs while also abstracting the
details of their execution on diverse NIC hardware. Directly
reusing a general-purpose IR like LLVM IR [22] will not
work well since it is too low-level to suitably capture/express
the semantics of SmartNICs’ parallel execution patterns and
memory hierarchies. This makes developing NIC-specific op-
timization passes hard. Creating an IR specific to a single
type of NIC (e.g., FIRRTL IR for FPGA [16], P4 IR for RMT
NICs [55,56]) fails to represent other architectures adequately.

C2: Identifying parallelization plans. Transforming single-
threaded NIC programs into pipeline-/data-parallel programs
is challenging because there are numerous ways to divide a
program into pipeline stages and replicate them. Parameters
include the location of stage boundaries, the number of stages,
and the stages’ replication counts. Also, NIC programs are
usually stateful, and careless parallelization can compromise
state consistency and correctness. Alkali must efficiently nav-
igate this expansive design space to find optimal solutions
while maintaining the program’s semantics.

To solve these challenges, we employ the following ideas:

I1: Stateful handler graph IR (§4). We observe that al-
though NICs come with huge compute and memory hetero-
geneity (Figure 2), their architectures and program execution
typically involve two main types of parallelism (pipeline and
data) and three kinds of state access (local value, persistent ta-
ble, and context state). Based on this, we propose the stateful
handler graph IR that enables flexible compiler optimizations.

I2: Iterative mapping-then-cut search (§5). To manage
the vast search space of parallelization plans, Alkali’s opti-
mizer mimics a developer’s fine-tuning process: starting with
a data-parallel, non-pipelined program, developers iteratively
identify bottlenecks and apply pipeline cuts to increase stages
and boost performance. Similarly, Alkali’s optimizer operates
in an iterative loop between two modules: (1) the mapping en-
gine (§5.1), which determines optimal data parallelism strate-
gies for the current pipeline and identifies bottleneck stages,
and (2) the cut engine (§5.2), which splits the bottleneck into
additional pipeline stages to improve throughput. The updated
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pipeline is then returned to the mapping engine for further
refinement. Throughout this process, both modules carefully
analyze program states to ensure that all cut and replication
plans preserve program correctness.

4 Alkali IR

We design αIR with two goals: (1) Providing a general repre-
sentation of the program’s execution on heterogeneous archi-
tecture, capable of abstracting various types of computational
parallelism and state access, and (2) Enabling the compiler
to realize a broad set of architecture-agnostic transformation-
s/optimizations. This section explains how αIR achieves them
with an example input C function that implements connection
limiter and transport [50] detailed in Figure 6a.

4.1 Abstracting Parallelism with Handlers

Observation. SmartNICs have a massive set of parallel com-
pute units. Each compute unit can be viewed as an inseparable
hardware block that logically executes code in sequence, such
as Agilio’s micro-engines, BlueField-2’s ARM cores, and
FPGA’s hardware modules. NIC programs typically leverage
two types of parallelism on these units: data parallelism and
pipeline parallelism.
IR design. We propose to abstract a NIC program as a han-
dler graph to capture parallelisms, in which each handler
abstracts a code block running inside a single compute unit.
In Figure 6b, the IR contains three handlers: H1 (line 4), H2
(line 15), and H3 (line 23), and Figure 5a visualizes the han-
dler graph. Each handler can be replicated, and a number of
replicas is specified in the IR (e.g., [r=2] in line 4). Handlers
use events to trigger another handler’s execution (e.g., lines 9
and 18 in Handlers H1 and H2). The start node of the graph is
triggered by hardware events (e.g., packet receive, host MMIO
doorbell, etc.), and the end node generates hardware events
(e.g., network packet send, DMA operations; see Line 31 in
Handler H3). Each handler has an event controller (line 14)
that defines how incoming events are ordered and partitioned
between a handler’s replicas. The handler graph captures both
data and pipeline parallelism: events spreading across repli-
cas represent data parallelism, while events flowing through
handler chains represent pipeline parallelism.
Enabled optimizations. This representation facilitates par-
allelism optimizations, allowing the compiler to adapt and

transform the graph for different hardware. As discussed in
§5, the compiler can split a handler into two pipelined han-
dlers to enhance pipeline parallelism or adjust the number of
replicas per handler to increase data parallelism.

4.2 State-based Memory Abstraction

Observation. SmartNICs have multiple memory layers, each
with different sharing scopes across compute units. Memo-
ries shared by fewer units typically offer better performance
but have smaller capacity. Optimal memory placement for
program states and variables depends on the state’s sharing
scope, lifetime, and access pattern.

IR design. We abstract NIC memory accesses into three
types of state: local value, persistent table, and context state
(Figure 5b), each with distinct sharing scopes, lifetimes, and
access patterns. Local values are temporary variables accessed
by a single handler replica and live only during a single event’s
execution. Persistent table state, like the connection limiter’s
table in Figure 6b’s line 1, persists across events and is ac-
cessed via lookup/update operations (lines 16 and 18). Con-
text memory is used to pass data along the handler chain, pass-
ing data by reference across handlers, unlike events copied by
value between handlers. For example, in Figure 6b’s line 9,
the payload value is stored in the context memory, and the
reference (ctx_1) is passed to H3.

Enabled optimizations. This representation enables various
memory optimizations, such as partitioning tables between
handler replicas to avoid synchronization and improve data
locality (§5.1) and optimizing data flow between handlers
using context memory to avoid copies (§5.4).

5 Parallelization Optimizations

Initially, the input run-to-completion, single theaded C func-
tion is converted into a single handler without pipeline or
data parallelism. As shown in Figure 7, the goal of the par-
allelization optimization is to transform this single handler
into replicated, pipelined handlers based on the target NIC’s
hardware characteristics.

The total search space for all possible pipeline and data
parallelization plans is enormous,1 and exploring it exhaus-
tively is NP-hard. To manage this complexity, Alkali reduces
the search space while ensuring that the generated plan is
both correct and near-optimal. To achieve this, Alkali de-
composes the search problem into two modules: a mapping
engine, which determines the handler replication plans, and a
cut engine, which splits handlers to increase pipeline stages.
Alkali uses an iterative "Mapping-Then-Cut" loop between
these two modules to guide the search.

1A program with just a hundred lines of code can have over a million
possible plans.



1 #include <alkali.h> // Alkali library
2 #include <agilio_spec.h> // Arch Spec
3
4 // Connection limiter table , key=src ip
5 ak_TABLE(64,int,int) cl_table;
6 // Transport flow state table , key=5 tuple
7 ak_TABLE(64,five_tuple_t ,
8 flow_state_t) flow_table;
9

10 // _net_recv event defined by agilio_spec
11 void _net_recv(hdr_t hdr, buf_t payload) {
12 /* Generate 5-tuple */
13 five_tuple_t tuple5;
14 tuple5.srcip = hdr.srcip;
15 // ... assign dst ip, ports and proto
16
17 /* Connect Limiter: count pk per srcip */
18 int i = ak_tb_lookup(cl_table , hdr.srcip);
19 i += 1;
20 ak_tb_update(cl_table , hdr.srcip , i);
21 // ... check i, drop packet if necessary
22
23 /* Transport: flow state update */
24 flow_state_t fs = ak_tb_lookup(flow_table ,
25 tuple5);
26 fs.dma_pos += hdr.len;
27 // ... update window , OoO detection
28 ak_tb_update(flow_table , tuple5 , fs);
29
30 // _dma_write defined by agilio_spec
31 _dma_write(payload , fs.dma_pos);
32 }

(a) Run-to-completion (RTC) C function that runs a connec-
tion limiter and an on-NIC transport [50]. All red functions
are library functions imported from alkali.h.

1 cl_table = "ak.init"(64){type=persist}
2 flow_table = "ak.init"(64){type=persist}
3
4 "ak.handler"[r=2] H1(hdr, payload){ /*H1, 2 replica*/
5 tuple5_0 ="ak.init"() /* Generate 5-tuple */
6 ctx_0 ="ak.init"()
7 sip ="ak.struct_access"(hdr){field=srcip}
8 tuple5_1 ="ak.struct_update"(tuple5_0 , sip){field=srcip}
9 ctx_1 ="ak.ctx_store"(ctx_0 , payload){field=p} //pass use ctx

10 "ak.genevent"(ctx_1 ,sip,hdr,tuple5_1){target=H2} //gen event
11 }
12
13 // Ctrl partitions events to H2’s replicas by srcip
14 "ak.ctrl"(H2){field=sip, rule=ordered , parti_by}
15 "ak.handler"[r=2] H2(ctx_1 ,sip,hdr,tuple5_1){/*H2, 2 replica*/
16 i1 ="ak.tb_lookup"(cl_table , sip) /* Conn Limiter */
17 i2 ="ak.add"(i1 ,1)
18 "ak.tb_update"(cl_table , sip, i2)
19 "ak.genevent"(ctx_1 ,hdr,tuple5_1){target=H3}
20 }
21
22 "ak.ctrl"(H3){field=tuple5_1 , rule=ordered , parti_by}
23 "ak.handler"[r=3] H3(ctx_1 ,hdr,tuple5_1){ /*H3, 3 replica*/
24 fs_0 ="ak.tb_lookup"(flow_table , tuple5_1) /* Transport */
25 dma_pos_0 ="ak.struct_access"(fs){field=dma_pos}
26 dma_pos_1 ="ak.add"(dma_pos_0 ,1)
27 len ="ak.struct_access"(hdr){field=len}
28 fs_1 ="ak.struct_update"(fs_0 , dma_pos_1){field=dma_pos}
29 "ak.tb_update"(flow_table , tuple5_1 , fs_1)
30 payload = "ak.ctx_load"(ctx_1){field=p}
31 "ak.genevent"(payload ,dma_pos_1){target=dma_send}
32 }

(b) Optimized αIR for the C program. Red texts are αIR operators. αIR is static
single-assignment (SSA) based, thus each value is assigned once. As shown in the IR,
after optimizations, the C program is transformed into three replicated handlers.

Figure 6: From Alkali source program to optimized αIR.
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1. The Pipeline Mapping Engine takes a non-replicated
handler pipeline and uses the SMT solver to search for a
replication plan that maximizes the pipeline’s throughput
within the target NIC’s hardware constraints. The solver
compares different searched plans’ throughput using a
cross-target performance model, whose parameters are
customized based on the vendor-provided performance
specifications. Once the optimized replication plan for a
pipeline is found, it is stored in the plan store, and the
bottleneck handler in the pipeline is sent to the cut engine
(Step 2 in Figure 7).

2. The Pipeline Cut Engine improves the bottleneck han-
dler’s throughput by splitting the handler into two pipeline
stages. It uses a Weighted Balanced Min-Cut algorithm
with three criteria: (1) reducing the handler’s state size to
improve state locality, (2) lowering the handler’s instruc-
tion count to increase throughput, or (3) splitting persistent
tables into different stages to enable a handler’s replication.
Newly produced increased-staged pipelines are sent back
to the mapper (Step 3 in Figure 7).

The loop continues until the predefined maximum number of
iterations is reached, which is 100 in our implementation.

5.1 Pipeline Mapping Engine

The pipeline mapping engine takes a non-replicated handler
pipeline as input and tries to find a mapping plan – i.e., the
number of replicas per handler and the memory placement
for each program state – that maximizes its throughput on a
given NIC. Our main innovation lies in formulating mapping
as an SMT problem. Using a solver and a cross-target perfor-
mance model, our engine searches for a mapping that, given
the hardware resources and handler replication constraints,
achieves the highest model-estimated throughput.

The solver retrieves parameters such as the number of com-
pute units, memory hierarchy, and sizes from a "performance



specification" (Table 1). Alkali requires NIC vendors to pro-
vide these (simple and brief) specifications.

Mapping plan. The solver searches for two parts of a plan:
The computational mapping plan defines the assignment of

handlers to compute units on the target NIC. Let the NIC have
n compute units, and the handler pipeline have K handlers.
The plan M1, . . . ,Mn (0 ≤ Mi ≤ K) specifies the assignment
of handlers to compute units. Mi = 0 indicates that no handler
is assigned to compute unit i. Mi = M j = X means that the
handler X is replicated on both compute units i and j.

The state mapping plan specifies the memory layer to
which each persistent table or context memory state is mapped.
Let the program have states S1, . . . ,Sm and the target NIC have
X memory layers. The state plan L1, . . . ,Lm (1 ≤ Li ≤ X) de-
fines the assignment of a memory layer to each state.

Resource constraints. Mapping plans must account for:
1. Memory capacity: For all states mapped to the same mem-

ory layer, the sum of the sizes of these states must be
smaller than the capacity of memory layer.

2. Memory sharing scope: If the handler H is mapped to
compute unit C, and if H’s state S is mapped to memory
layer L, then C must be able to access L.

Replication constraints. Care must be taken when replicat-
ing stateful handlers in NIC programs (as noted in [18] in the
network functions context). Crucially, replicating a handler
with a persistent state may have correctness issues because
sharing such states among parallel handler replicas can lead
to race conditions. For example, in Figure 6b, when handler
H2’s replicas run concurrently, a race between the connection
limiter table’s lookup and update operations can cause the
state to become inconsistent.

To avoid race conditions, we can either synchronize han-
dler replicas or disable replication for handlers, but both ap-
proaches can significantly and needlessly degrade perfor-
mance. Fortunately, because tables are indexed by keys, we
can partition table state across handlers as long as we en-
sure that all events accessing a specific key are steered to the
same replica [18, 43]. For example, the connection limiter
table in H2 (Figure 6b) can be partitioned between replicas
when events are steered based on the source IP by the event
controller (line 14).

Thus, we add the following constraints during mapping:
1. A handler without any persistent tables or with read-only

persistent tables can be replicated.
2. A handler with non-read-only persistent tables can be repli-

cated only if: (1) All lookup and update operations on non-
read-only tables use the same key (which can be identified
through data flow analysis) and (2) the key is present in the
input event parameters, which allows the event controller
to use it to steer events (e.g., in Figure 6b, the source IP
is H2’s input event parameter and is used by the event
controller for steering in line 14).

Cross-target performance model. The performance model

Parameter Description Usage
InstrTimeFn({op}) A function that returns the instruction execu-

tion time for a set of IR operators.
Perf Model

MemTimeFn(l,b) A function that returns memory access latency
for layer l when b bytes are accessed.

Perf Model

CommTimeFn(i, j) A function that returns interconnect communi-
cation time from compute unit i to j.

Perf Model

CU Count Number of compute units on the NIC. Map Constraints
Mem Layers Total memory layers and how these memories

are shared between compute units.
Map Constraints

Mem Sizes The size of each memory layer. Map Constraints

Table 1: Parameters provided by the performance specification. Per-
formance parameters can be derived from offline microbenchmarks.

estimates each pipeline stage’s performance using the han-
dler’s throughput multiplied by its replication count, and the
overall pipeline performance is determined by the slowest
pipeline stage. It uses a general formula whose parameters are
customized based on performance characterization metrics –
also included in the NIC performance specification (Table 1).

The throughput of a handler H’s replica is calculated as:

T (H) =
1

ExecTime
=

1
TimeInstr +TimeMem +TimeComm

That is, T (H) depends on:
1. TimeInstr: The handler’s instruction execution time is esti-

mated by InstrTimeFn, as defined in Table 1. Each back-
end can provide its own implementation of InstrTimeFn
through Alkali’s interface. The current implementation
uses a simple model that sums up the cycle latencies of
individual IR operators. In future work, the InstrTimeFn
interface could be extended to integrate with more detailed
or ML-based models for improved accuracy.

2. TimeMem: The total memory access time for the handler’s
states, calculated by summing the memory access latencies
of all mapped states. The latency for accessing each state is
calculated based on the MemTimeFn in the performance
specification.

3. TimeComm: The time of sending events to the next pipeline
stages through on-chip interconnects. If this handler
has M replicas and sends the event message to the
handler on compute unit j, the communication time is
∑i∈M_Replicas CommTimeFn(i, j), which models the mes-
sage incast overhead that scales linearly with concurrent
senders. This term penalizes mappings with excessive han-
dler replications that cause significant communication over-
head when pushing data to the same destination.
It is important to note that precise mapping-performance

estimates are not critical. The primary objective is to com-
paratively rank and assess different mapping strategies. This
design philosophy allows our performance model to remain
general and cross-target, accommodating various hardware
configurations.

Lock-free execution. Alkali’s replication algorithm pro-
duces lock-free programs by avoiding synchronization among
compute units (e.g., Alkali replicates a handler only when



its state can be partitioned). This design is driven by two
factors. First, locking overhead is typically prohibitive in
high-throughput NIC data paths, and many NIC programs
can operate without synchronization when sufficient hard-
ware parallelism is available. Second, accurately estimating
locking and synchronization overhead in the performance
specification is challenging.

5.2 Handler Cut Engine
The handler cut engine aims to improve the throughput of
a bottleneck handler by splitting its instructions into two
chained pipeline handlers. Similar to prior work [9], the basis
of our approach is to construct a flow network based on the
data dependencies of handler instructions which allows us to
model the problem of partitioning instructions into pipeline
stages as selecting cuts in the flow network. Our innovations
lie in devising a Weighted Balanced Min-Cut formulation
showing how different performance objectives map to this
modeling and ensuring and proving the correctness of the cut
when the handler has persistent NIC program states.
Construct flow network. Figure 8a shows the flow network
graph constructed for the H1 handler in Figure 6b. Each gray
node (L5–L10) represents an IR statement from lines 5 to 10
of Figure 6b, while each white node corresponds to the value
defined by a statement. For every statement S that defines a
value V , we add a definition edge (S,V ) with a weight equal
to V ’s byte count, representing the cost of transmitting V
between pipeline stages. Additionally, for each statement S
that uses V , we add a usage edge (V,S) with infinite weight.2

As shown in the figure, by finding a cut that divides the
nodes into disjoint subsets, we can split the H1 handler into
two pipelined handlers. The figure shows a possible cut where
the first pipeline stage contains statements L5 and L6, while
the second stage includes statements L7–L10. The communi-
cation cost between stages is equal to the sum of the weights
of the cut edges (79B in this example).
Uncuttable region for persistent table. Cutting access to
persistent tables across pipeline stages can lead to correctness
issues due to inconsistent operations. For instance, Figure 8b
illustrates the flow network for the H2 handler in Figure 6b,
showing a cut that separates the table’s lookup operation (L16)
from its update operations (L17 and L18) into two pipeline
stages. In this scenario, when two packets enter the pipeline
sequentially, with the first packet in stage 2 and the second
packet in stage 1, the second packet’s table lookup may occur
before the first packet’s table update, which can be incorrect.

We prevent such cuts as follows: we first add a UNCUT
node (Figure 8b) for each persistent table and add bidirec-
tional infinite-weight edges from the lookup (L16) and update

2The infinite weight ensures that cuts happen only on definition edges
– this is because the weights of the cut edges should reflect a value’s trans-
mission cost, which depends on its defined size rather than the number of
uses.

(L17) statement nodes to the UNCUT node. This ensures
that all statements involved in reading or writing the same
persistent table remain within the same pipeline stage.
Weighted balanced min cut. We now consider where to cut
the flow graph to most effectively improve the handler’s per-
formance. We develop a weighted balanced min-cut algorithm
that extends the traditional balanced min-cut approach [9, 61]
with specialized weight functions tailored to our performance
objectives. The balanced min-cut algorithm starts by finding a
min-cut of the graph and then iteratively applying the min-cut
process to the larger side of the flow graph until it identifies
a balanced cut that satisfies |W −W | ≤ β, where W and W
represent the sum of node weights on the left and right sides
of the cut, respectively. β is the imbalance tolerance threshold.

We note three main sources of speedup from pipelining a
handler, which guide our node weight functions’ design:
1. Reducing handler state: By partitioning the handler state

equally into two stages, the state size within each handler is
decreased. This allows the handler state to be allocated in a
local, faster but smaller memory layer in the next mapping
iteration. If the handler’s performance is memory-bound,
throughput can be improved. Weight function: Based on
this, we assign weights equal to the byte count to all value
nodes (white nodes in Figure 8a) and assign a weight of 0
to all other types of nodes.

2. Reducing instruction counts: Equally partitioning the
handler’s instructions into two stages decreases the in-
struction count in each handler. If the handler’s perfor-
mance is compute-bound, this can improve throughput.
Weight function: Thus, we assign a weight of 1 to all state-
ment nodes (gray nodes in Figure 8a) and assign a weight
of 0 to all other node types.

3. Splitting tables to enable handler replication: As dis-
cussed in §5.1, a handler cannot be replicated if it contains
multiple persistent tables with different keys. By splitting
tables with different keys into different pipeline stages,
each handler becomes replicable, allowing the program to
utilize more compute units in the next mapping iterations.
Weight function: First, we group tables with identical keys
and add a UNCUT node for each "table group" to pre-
vent splitting same-key tables across different stages. Then
we assign a weight of 1 to each table group’s UNCUT
node and 0 to all other node types. This weight assignment
encourages the weighted balanced min-cut algorithm to
split tables with different keys into different stages while
keeping the same key tables in the same stage.

5.3 End-to-end Example and Properties
Figure 9 shows a simple example that puts these components
all together. In iteration 1, the input RTC handler A is mapped
by the mapper. Since it has multiple tables with different keys,
A can only have a single replication. Next (iteration 2), A
is sent to the cut engine, which generates three 2-stage han-



Stage1 Stage2

(a) Constructed flow network graph of Figure 6b’s H1 handler. It shows a cut that
splits the handler into two pipelined handlers, with L5 and L6 in the first pipeline
stage, and L7-L10 in the second pipeline stage.

Stage1 Stage2

(b) Flow network graph of Figure 6b’s H2 handler. This cut shown
in the figure is incorrect since it split the table lookup operation
(L16) with the update operation (L18) into two stages. By adding
the UNCUT node we can prevent this cut.

Figure 8: Constructed flow network graph.
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Figure 9: End-to-end example.

dler pipelines based on three performance objectives. These
pipelines are mapped, which calculates the replication number
for each handler within each pipeline. Compared to iteration
1, the program’s performance may increase or decrease after
the cut. In subsequent iterations, the mapper identifies the
bottleneck handler for these three pipelines and sends it to the
cut engine to generate 3-stage pipelines. This loop continues
until the predefined max. iterations is reached, after which the
optimizer selects the plan with the best performance from the
history plans.

Search optimality vs. efficiency. It is important to note that
Alkali does not guarantee optimality; in rare cases, the search
algorithm may overlook better parallelization plans. However,
Alkali is not designed to find the absolute best plan. Instead,
its goal is to efficiently generate correct, competitive plans that
closely approximate expert implementations. By employing
domain-specific heuristics, Alkali filters out suboptimal plans,
which narrows the search space and reduces reliance on an
exact performance model.

Correctness. In §A.2, we show that after optimization, the
replicated handler pipeline Pa is semantically equivalent to
the original RTC handler Pb; that is, after executing the same
input event sequence, Pa and Pb will generate the same output
event sequence and end in the same persistent state.

5.4 Other Optimizations

After the parallel optimizations, Alkali performs a pass of
four other optimizations:
1. Traditional optimizations. These include peephole op-
timizations [1], control flow reduction, and elimination of
common expressions [8] and dead code [20].

2. Event controller generation. After replicating handlers,
the compiler generates event controllers to dispatch events
between replicas of handlers based on the table keys.
3. Context memory conversion. αIR supports two methods
to pass variables along the handler chain: Pass-by-event and
Pass-by-context (§4). Context memory conversion optimiza-
tion determines when to use pass-by-context based on the
variable’s size and lifetime. If a variable is large or needs
to persist across multiple handlers, Alkali opts for pass-by-
context to avoid redundant data copying.
4. Saving context memory. This optimization further min-
imizes context memory allocations. Each handler pipeline
analyzes the temporal overlap in the lifetimes of data stored
in the context. It then tries to reuse memory for data with non-
overlaspping lifetimes (detailed example relegated to §A.1)
thereby saving overall context memory.

6 Programming Frontend, Architecture Spec

Our prototype supports programs written in C, using a subset
of the language that is expressive enough for a wide range
of NIC programs (§8.1). For example, developers can use
conditional branches (if-else) and bounded loops, but pointer
operations and unbounded loops are not currently supported.
Since Alkali programs are written as single-threaded execu-
tions, concurrency primitives such as mutex locks are also not
supported. Additionally, developers must include alkali.h,
which provides built-in data structures (e.g., tables, packet
buffers) and library functions for common operations such as
table lookup/update and buffer extract/emit. Looking ahead,
we plan to extend Alkali to support additional languages,
including Python and P4.



Because network traffic distribution affects program perfor-
mance, developers can annotate their code to make Alkali’s
compiler optimizations workload-aware. For instance, they
can limit the maximum number of table replications based on
active flow counts, allowing the SMT solver to use this as a
replication constraint. Additionally, developers can specify
branch probabilities to enhance the performance model’s ac-
curacy in estimating handler execution efficiency. Below are
examples:

1 annot_MAX_REPLICA(3) ak_TABLE(64,int,int) ftable;
2 annot_BRANCH_PROB (0.7) if(a){...};

Each NIC vendor provides an "architecture specification",
which is included as a header file in the Alkali program (e.g.,
line 2 in Figure 6a). The specification defines the high-level
interfaces for supported hardware events on the target NIC,
enabling developers to write functions to process and generate
these events. For example, Figure 6a’s C function processes
net_recv events and generates dma_write events and is de-
fined by the specification as follows:

1 // Event processed by programmer
2 void _net_recv(hdr_t hdr,buf_t data){}
3 // Event processed by hardware
4 void _dma_write(buf_t data ,long addr){return;}

This event-based interface hides NIC micro-architectural
details, enhancing program portability: a single Alkali pro-
gram can be compiled for NICs with the same event types.

7 Backends and Compiler Implementation

We implement four distinct NIC backends, each representing a
different type of SmartNIC architecture: Agilio [36] (on-path
SoC NICs), BlueField-2 [34] (off-path SoC NICs), Alveo [3]
(FPGA NICs), and PANIC [30] (a prototype of an ASIC NIC).

Each backend takes the optimized αIR and generates target-
specific executables. The Agilio backend produces a NFP
Micro-C code [37], while the BlueField-2 backend converts
the αIR into LLVM IR, generating ARM binaries linked to the
DPDK runtime. The Alveo backend outputs Verilog code, and
the PANIC backend produces bare-metal RISC-V binaries
with scheduler configurations.

The backend translates the IR objects into architecture-
specific components (Table 5). For instance, in the Agilio
NIC, handlers run as micro-engine threads, while on FPGAs,
handlers are implemented as hardware modules with parallel,
pipelined LUTs (FPGA backend details are in Appendix B).

Because handler replicas running on parallel compute units
can reorder events due to variable processing times (e.g.,
smaller packets finishing before larger ones), the αIR event
controller ensures proper event ordering by default. It re-
orders events from the previous stage’s handler replicas before
dispatching them to the next stage. Each backend generates
different code to handle event sequencing (e.g., the FPGA
generates a reorder buffer, while Agilio generates code that

invokes a hardware sequencer). For programs that tolerate
out-of-order processing [7, 28], programmers could add an-
notations to disable event ordering, allowing backends to use
FIFO queues, not sequencers.

We implement the C frontend, Alkali compiler, and back-
ends using the MLIR framework [23], totaling 20K lines of
C++. We also developed runtime libraries for each NIC target,
totaling 4K lines of code, providing features such as dynamic
memory allocation, event steering, and inter-compute unit
communication queues. Since Alkali centralizes most opti-
mization and mapping in a common compiler mid-end, adding
support for new backends is streamlined. e.g., the BlueField-2
backend was developed in a week using 1107 lines of code.

8 Evaluation

We evaluate Alkali by answering the following questions:
1. Does it help easily write portable NIC applications (§8.1)?
2. Does Alkali programs perform well across targets (§8.2)?
3. Does the mapping-then-cut loop find good plans (§8.3)?
4. Does the mapping engine find optimal computational and

state mapping plans (§8.4)?
5. How do other optimizations improve performance (§8.4)?

Testbed: Our testbed comprises five commodity servers
with two Intel Xeon Gold 6258R 28-core CPUs and 256GB
of RAM. We use one server equipped with a Mellanox
ConnectX-6 DX NIC to generate DPDK traffic to four
SmartNIC servers. Each SmartNIC server is equipped with
one of these four SmartNICs: (1) a 100GbE AMD Alveo
U280 [3], atop which runs the generated FPGA program at
250MHz; (2) PANIC’s FPGA prototype [30] (configured to
have 32×250MHz RISC-V cores); (3) a 40GbE Netronome
Agilio CX [36] (equipped with 48×800MHz micro engines);
and (4) a 100GbE BlueField-2 DPU (8×2.5GHz ARM A72
cores and 16GB DRAM).

8.1 NIC Applications Implemented with Alkali

Table 2 lists five NIC applications implemented using Alkali.
For the L2 forwarding [40], JSQ RSS [17], and FlexTOE [47],
we re-implemented in Alkali-C based on their open-source
implementations to ensure functional equivalence. For the
NF chain and RPC message reassembly applications, where
no open-source implementations were available, we asked a
graduate student with SmartNIC expertise to write them using
BlueField-2’s DOCA API as our baseline.

Table 2 compares the lines of code (LoC) between Alkali
programs and their baseline implementations. The Alkali im-
plementations are 5–10× smaller, as Alkali allows developers
to focus on core logic while abstracting away target-specific
details. All Alkali-C programs can be compiled for different
NICs with no modification, demonstrating Alkali’s portability.



Application Description Alkali Original Impl LoC
LoC (Target NIC)

L2 Forward [40] Swaps the Ethernet source and destination addresses and echoes packets back to the network. 28 128 (Agilio )
Flextoe Trans-
port [47]

Flextoe’s RX pipeline (same as Figure 2), it validates the packet header, performs OoO detection, and looks
up and updates the flow table. It then generates ACKs and DMA payloads to the host.

224 1264 (Agilio)

NF Chain A chain of three network functions to offload a stateful firewall, a connection limiter, and a L4 load balancer.
The chain has six tables: four use the 5-tuple as the key, while two use src and dst IP addresses as the key.

289 780 (BlueField-2)

RPC Message
Reassembly

It drops OoO packets, looks up the flow assemble buffer table to get the assemble buffer for this flow, and
appends the incoming packet’s payload to this buffer and update table. It sends assembled msg to host.

120 467 (BlueField-2)

JSQ RSS [17] Implements Ringleader’s request steering [28]. NIC uses a worker load table to track the inflight request
count on 32 host cores and steers incoming requests to the least-loaded core.

126 1312 (FPGA)

Table 2: Application description. The last two columns compare LoC when using Alkali and vendor-provided SDK.
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Figure 10: Performance of Alkali programs on NIC targets. The number over the bar shows the number of pipeline stages in the generated code.

Throughput (Gbps) Latency LUTs
64B Packet 128B Packet (ns) Usage

Ringleader 64 Gbps 100 Gbps 64ns 208K(1.6%)
Alkali 64 Gbps 100 Gbps 84ns 247K(1.9%)

Table 3: Alkali’s JSQ RSS performance compared to Ringleader’s
original implementation on FPGA.

8.2 Performance on Heterogeneous Targets

We evaluate the above applications’ performance on different
targets and compare them with experts’ implementations.
Alkali program performance. Figure 10 shows the end-
to-end throughput of five applications across four targets,
measured with 256B packets. The L2 forwarding application
achieves the line rate on all NICs. FlexTOE also reaches line-
rate performance on all NICs except PANIC, where the low-
frequency RISC-V cores become a bottleneck. FlexTOE’s
flow table satisfies replication constraints and can be parti-
tioned across multiple handler replicas, enabling data and
pipeline parallelism to sustain high throughput.

The NF chain application, consisting of six tables, achieves
the line rate on the FPGA and Agilio NICs. Alkali’s cutting
algorithm efficiently splits the NF chain’s tables into pipelined
handlers, ensuring that tables in each handler share the same
key and can be replicated. On BlueField-2, performance is
limited to 50 Gbps due to high inter-core communication
overhead, which degrades pipeline efficiency.

Message reassembly operates below line rate on Agilio
(22 Gbps), BlueField-2 (57 Gbps), and PANIC (19.73 Gbps)
due to the costly buffer aggregation operation, which involves
copying the entire packet payload to the reassembly buffer.
This overhead significantly reduces throughput on SoC NICs.

JSQ RSS has limited throughput on Agilio, BlueField, and
PANIC. It uses a small load table to track in-flight packet
counts per core. Upon receiving a packet, it looks up each
core’s load, selects the least loaded one, and updates its count.
Since the table lookup and update operations use different
keys, handler replication is impossible, creating a bottleneck.
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Figure 11: Alkali compiled FlexTOE’s performance compared to its
original implementation on Agilio.

The FPGA achieves line-rate performance because the ta-
ble is mapped to local registers, allowing both operations to
complete within two cycles and ensuring high throughput.
Comparison with experts’ implementations. We evalu-
ated and compared Alkali generated program performance
with FlexTOE [50]’s open-source Agilio implementation and
Ringleader [28]’s FPGA implementation. We also compared
the message reassembly and JSQ RSS application with NIC
expert’s Bluefield implementations.

Figure 11 shows that Alkali closely matches FlexTOE with
a 10% performance gap. Both achieve line rate for packet
sizes larger than 1KB with a single flow or for packets larger
than 256B with 16 flows. The gap is mainly due to Alkali’s
mapping engine searched replication count for a pipeline stage
being not optimal when running on real hardware.

Alkali’s JSQ RSS performance matches Ringleader’s im-
plementation. The generated Verilog achieves comparable
throughput to an FPGA expert’s design since the compiler
automatically breaks the program into pipeline stages. Alkali
has 30% higher latency and 18% higher resource utilization
due to the backend inserting registers between dependent
operations to avoid timing issues. A future backend could
remove unnecessary registers when timing allows.

We then asked a NIC expert to port this JSQ RSS program
and implement the message reassembly program on Bluefield.
The result in Appendix C shows that Alkali’s performance
lags 0.6% to 9.8% behind the expert implementations. No-
tably, the expert spent 14 hours implementing the fine-tuned
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Figure 12: The best-searched parallelization plan’s throughput under
different iteration counts.

applications, whereas Alkali compiled from unmodified code.

8.3 Effectiveness of Mapping-Then-Cut

We use the NF chain application to demonstrate how Alkali’s
mapping-then-cut loop searches for an optimal parallelization
plan. Figure 12 shows that as the number of search loop’s
iterations increases, the performance of the historical best
plan improves. In different iterations, Alkali tries different
cutting methods, gradually dividing the program into multi-
stage pipelines, which improves performance. Eventually,
performance plateaus as finer-grained parallelism no longer
adds benefits. The performance saturation point varies by
architecture. For Bluefield, the optimal plan is found with a
3-stage pipeline (at iteration 13), while for Agilio, it is found
with a 4-stage pipeline (at iteration 26).

We provide a walk-through of how the program is cut into
pipelined handlers. For each NIC, we present the cut history
for the 5-stage pipelines that perform best. Figure 13’s bar
graph shows throughput changes after each cut step; the table
below details the cut type, the replication count per handler,
and the identified bottleneck. The results show: (1) different
cut methods improve performance in different steps. For ex-
ample, the table cut improves performance in Agilio’s Steps 1
and 2, while in Step 3, the state cut does. This highlights the
importance of Alkali trying all three cut methods per iteration;
(2) the bottleneck handler shifts after each cut, emphasizing
the need to iteratively identify bottlenecks before applying
further cuts; and 3) a cut does not always guarantee improved
performance. For example, Bluefield’s performance decreases
after the first cut, but improves after the second. This shows
the importance of Alkali maintaining the plan history and con-
tinuing the search to avoid getting stuck in the local optima.

8.4 Effectiveness of the Mapping Engine

We now evaluate whether the mapping solver can identify
good handler replication and state mapping plans.

Handler replication plan. We evaluate whether Alkali can
effectively determine handler replications. We did an exhaus-
tive manual search of all possible replication plans3 for the

3Since the NF chain achieves line-rate on Agilio, we restricted the appli-
cation to a single island (12 micro-engines) to observe throughput variations
across different mapping plans.
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Figure 14: Alkali mapping plan’s performance compared with the
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State Placement FlexTOE Perf NF Chain Perf
Place into EMEM 1.05 Mpps 0.86 Mpps

Place into CLS 2.06 Mpps 3.34 Mpps
Alkali solver’s plan 6.28 Mpps 4.43 Mpps

Table 4: Comparison of the solver’s state placement plan’s performance
with the other two naive plans.

NF chain application’s 3-stage pipeline and measured the per-
formance of these plans on the Agilio NIC. We compared
these plans’ performance with the one generated by Alkali’s
mapping solver (Figure 14). The results show that Alkali finds
the second best plan in the search space, whose performance
is 8.4% below the best replication plan. Alkali did not find the
best plan because of the simplicity of the performance model,
which estimates computational cost by summing the execu-
tion latencies of individual IR operations. Nonetheless, the
results suggest that this model is adequate for automatically
finding practical mappings.

Alkali’s solver can identify the optimal replication plan for
both FPGA and BlueField-2. For FPGA, Alkali’s performance
model can accurately estimate the handler’s throughput, as
the execution cost (initial interval) of each IR operation type
is predictable when running on the hardware.

State placement. Alkali’s mapping solver strategically
places program states in the fastest available memory tier
based on the state’s sharing scope and size. For FlexTOE and
NF chain, we compare Alkali’s state placement plan with
two other naive mapping strategies on Agilio: (1) placing
all states into the global memory hierarchy (EMEM) and (2)
placing all states into the cluster local scratch memory (CLS).



Table 4 shows that, compared to the naive placement strate-
gies, Alkali’s state placement yields a 1.32× to 6× improve-
ment in throughput. Alkali achieves better performance by
utilizing all of Agilio’s memory layers (CAM, fast local mem-
ory (LMEM), CLS, and EMEM). Alkali places frequently
accessed, small states in CAM and LMEM, while storing
infrequent, larger states in CLS and EMEM.

Performance model sensitivity. We found that Alkali’s per-
formance model is robust to parameters in performance speci-
fication. Even with parameter errors up to 50% of the accu-
rate value, the mapping result performs only 1.3% lower than
when using accurate values.

Effectiveness of other optimizations. We studied the ben-
efits of other compiler optimizations (Section 5.4) and mea-
sured the throughput of the FlexToE program on BlueField-2,
Agilio NICs, and PANIC. Our results show that traditional
compiler optimizations yield performance improvements of
5%–20%. Context conversion results in gains of 6%–113%,
while context reduction provides improvements of 6%–137%.

9 Limitations and Future Work

Handling dynamic workloads. Alkali currently depends on
program annotations to enable workload-aware compile-time
optimizations (see §6). However, this approach has limita-
tions, as it does not account for workload shifts occurring at
runtime. In the future, integrating Alkali with a dynamic run-
time workload profiler could enable automatic recompilation
and adaptation in response to changing workloads.
Detailed performance specifications. Alkali’s performance
model relies on functions defined in the performance specifi-
cation. Our prototype utilizes simple functions (e.g., summing
instruction cycles for InstrTimeFn) to estimate performance.
While this approach achieves good results, as demonstrated
in our evaluation, future work will incorporate more detailed,
potentially ML-based, per-hardware models. These enhanced
models will account for additional factors such as memory
contention, cache hierarchies, and out-of-order execution, fur-
ther improving the accuracy of parallel optimization.
Support for locking. As mentioned in §5.1, Alkali currently
does not support locking due to the challenges of accurate
model contention overhead. In the future, with a more detailed
performance specification that models locking costs, Alkali
could enable handler replication for non-partitionable shared
states by automatically generating locks to safeguard critical
sections where the shared state is read-then-modified.

10 Related Work

Compilers for programmable switches. Programmable
switch compilers such as Domino [52] partition C code
into pipeline stages, while Gallium [62] and Lyra [12] dis-
tribute programs across switches and servers. Unlike Alkali,

these compilers are designed for switches with fixed line-rate
pipelines, focusing on pipeline partitioning and resource pack-
ing. In contrast, NICs support pipelining and data parallelism
without a fixed rate, which requires Alkali to explore mul-
tiple dimensions of parallelism with extensive performance
optimizations.
IR for accelerators. Prior work has developed domain-
specific IRs for hardware accelerators, including GPUs [22,
54] and FPGAs [32, 49]. However, αIR is distinct in that it
is specifically designed to abstract the unique architectural
features of NICs, such as parallel event processing and mem-
ory hierarchies. It also supports key functionalities commonly
used in NIC programs, including persistent tables, flow steer-
ing, and context states.
SmartNIC performance prediction. Many tools have been
developed to predict the performance of NIC programs [13,39,
46, 51]. Clara [46] transforms NIC programs into LLVM IR
and uses ML models to predict the program’s performance on
various SoC NICs. Pipeleon [60] adopts a profiling-based ap-
proach to predict the performance of the P4 program. HLSPre-
dict [39] and LEAPER [51] forecast FPGA program through-
put and latency. Alkali can integrate these models for parame-
ter estimation in the performance specification. For example,
Clara could take αIR as input and estimate its execution la-
tency on a given target, which can be integrated with Alkali’s
performance model (e.g., through the InstrTimeFn interface).
Network programming languages and IRs. Many existing
works have developed high-level programming languages for
network hardware devices, such as Lucid [53], Click [21, 26],
Floem [44], and λ-NIC [7]. Alkali is complementary to these
efforts and can be extended to support these programming lan-
guages. NetASM [48] provides an IR for network programs
using an assembly instruction set. However, it lacks automatic
parallelization optimizations for heterogeneous targets.

11 Conclusions

We present Alkali, a multi-target NIC compilation framework
that introduces a novel intermediate representation to abstract
the compute parallelism and state access of NIC programs.
Alkali uses an iterative parallelism optimization algorithm
that automatically transforms single-threaded programs into
highly optimized ones. Our prototype effectively compiles
five NIC applications across four distinct NIC architectures.
The compiled programs run efficiently on all targets, exhibit-
ing a performance gap of less than 9.8% compared to expert
implementations.
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Figure 15: Context memory optimization.

A Additional Design Details

A.1 Context Memory Reduction Example
Figure 15 shows how context memory optimizations reduce
context memory allocations. Consider a program with a call
chain handler 1 → handler 2 → handler 3. The context state
passed through the chain has three fields: A1 (16 bits), A2 (16
bits), and A3 (32 bits). Figure 15a shows the allocation of
context memory without the optimization. It allocates 64b to
store A1, A2, and A3. However, from the figure, we can see
that A3 has a non-overlapping lifetime with A1 and A2, as A1
and A2 are used only by handlers 1 and 2, while A3 is used
only in handler 3. With context memory optimization, for
each handler call chain, the compiler analyzes the lifetimes
of context fields and attempts to reuse buffer slots for context
fields with non-overlapping lifetimes. As such, the compiler
can allocate only a 32b context memory, allowing A3 to reuse
the memory slots of A1 and A2 (Figure 15b).

A.2 Proof of Parallelization Optimizations
Correctness

We prove that the transformed pipelined, parallelized program
is fully equivalent to the original run to completion (RTC)
program. We define the equivalence using as following:

Theorem 1. With the same starting persistent state, after ex-
ecuting the same input packet sequence, a run-to-completion
program Pa and a transformed pipelined, parallelized pro-
gram Pb would generate the same sequence of external events
and ends up in the same persistent state.

Proof. The proof is based on the following property of αIR
transformation implementation:

Prerequisite 1. αIR transformation does not break data de-
pendency.

Prerequisite 2. αIR transformation does not reorder depen-
dent table and event generation operations, as we convert the
ordering constraint into data dependency in αIR.

We first prove that the program state and generated event
values are equivalent after transformation after execution of
a single packet. In case of single packet execution, the order
of generate events is Thanks to the αIR’s simplified memory

model and operations, the only program state is table value.
We need to prove

Lemma 1. After executing a single packet, in Pa and Pb, for
any table T and any key k, the value T [k] will be the same; for
any generate command, the content of the generated event is
the same.

Proof. We reason about the value of operations. There are two
types of operations in αIR. First, all operations except table
access operations in αIR are pure operations, whose value is
only decided by its parameter values, and not related to any
system state; Second, Only table operations lookup,update
and event generate operations are non-pure operations. which
table operations will change system state and event generation
will change the external state.

Based on that, We further prove all operation output val-
ues remain unchanged after the transformation by reduction.
Based on pre-assumption 1, All of our transformations re-
serve the data dependency for non-pure operations: which
means that for all pure operations we do not change the input
parameters, thus the output values are the same. For the values
produced by non− pure operation, we use reduction to prove
they are not changing. We prove the following For any table T
and key k, if we perform the same sequence of operations, we
will end up in the same system state. We prove by reduction
on sequence length. For the first-ever non-pure operation in
the data dependency graph (in topological order), all its input
parameters must be pure values, it holds in this case. At any
sequence l, as all system state and values are all the same, the
parameter for input l + 1 is also the same, and we will get
same output value and system states.

After understanding the case for single packet, We could
easily get the following conclusion based on the proof: 1.
Reschedule of pure operations with both pre-assumption hold
will not change the output value of them. 2. Pa and Pb is
equivalent when a sequence of packets are executed in order
without parallelism.

Next, we reason about the case when multiple packets
could be executed in pipeline- or data-parallelism, based on
the following properties:

Prerequisite 3. A packet will be processed by only one single
handler out of multiple replicated handlers.

Prerequisite 4. Key Partition. For a partition P and parallel
handlers Hi after the partition, if any table operation with key
k happens in Hk, all table operations with key k must happen
in Hk.

Prerequisite 5. Event Reorder. The order of generated events
in parallel handler for any input packet sequence is the same
as if the sequence is executed without parallelism. This is
achieved with reorder buffers.



Event Handler Controller State
Local Context Persistent Table

Agilio Inter-ME A hardware HW ME local Mem pool in Table
msg thread on ME Sequencer registers CLS/EMEM in TCAM/CLS/..

Bluefield Inter-ARM A thread on Reorder Stack var Mem pool in Table
core msg a ARM core queues in DRAM DRAM in DRAM

FPGA Inter-module Pipelined Reorder Intra-module Inter-module Table
msg LUTs Buffer datastream datastream in BRAM/TCAM

PANIC Inter-RISCV Instructions on Centralized RISCV core NoC msg Local State
core NoC msg RISCV core Sche queues local mem metadata Only

Table 5: How αIR’s concept maps to different hardware targets.

We now reason about the case that Pa and Pb is the same
with multiple packets executed in parallel. We first prove that
the value of table and generated events is equivalent:

Theorem 2. For a partition P and parallel handlers Hi. For
any sequence of packets, the table state change (For any table
T , Pa and Pb, for any key k, the value T [k] is the same for
parallel (multiple RTC in parallel on different Hi) and single
packet execution.

Proof. Considering each different k is executed indepen-
dently in the same sequence, leveraging Pre-assumption 3.
Similarly, for a multi-partition-stage pipeline, we can prove
by reduction if the input event sequence is the same for
each partition stage, the program is identical to the original
program.

Also, based on Pre-assumption 5, the order of generated
event is identical. Pa and Pb generate same event sequences, as
the order and value of each event in the sequence is identical.
So for any input event sequence, the transformation keeps
generated events and program state unchanged.

However, in real scenarios, we often do not want the pro-
gram to be fully equivalent: for example, sometime the order
of generated events do not matter to both system state and
external state, and leveraging this information could lead to
further performance optimizations. Thus, we leave this choice
to the user: if the user believes that there is any system state
(i.e, a table for counting the number of packets) that does
not need to be updated in order or there are external generate
events that do not need to happen in order, user could annotate
the corresponding table and generating operations and Alkali
will leverage the information to optimize the generated code.

B Additional Implementation Details

Table 5 shows how different Alkali concepts maps to hetero-
geneous hardware backends.

FPGA Backend. Compared to CPU architectures, FPGAs
exhibit unique computational characteristics. They support
massive parallelism and can be thought of as having thousands
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Figure 16: Compare to expert’s implementation on Bluefield.

of micro-cores operating concurrently. To fully leverage this
parallelism, the backend exploits both coarse-grained paral-
lelism at the handler level and fine-grained parallelism within
each handler.

The backend first exploits coarse-grained parallelism where
each handler and its replicas are mapped to an independent
hardware module, ensuring that handlers can execute in paral-
lel. Within each handler, the backend exploits fine-grained par-
allelism by mapping each IR operator to a dedicated hardware
execution unit (e.g., subtractor, adder, CAM) and converting
IR’s SSA values into pipelined FIFO queues that interconnect
these execution units. This design maximizes parallel execu-
tion by enabling continuous data flow between IR operators.

The FIFO queues between IR operators ensure that the
generated hardware design meets timing constraints. While
this approach may introduce some redundant pipelining struc-
tures, we observe that the additional resource usage remains
minimal compared to the available FPGA resources. Future
work will focus on optimizing resource utilization to further
improve efficiency.

FPGA mapping constraints ( Table 1) differ from those of
SoC-based NICs. We do not impose a limit on the number
of compute units in the FPGA. For memory layers and sizes,
we set the constraint based on the total available BRAM and
DRAM on the FPGA.



C Additional Evaluation Results

Compare with a BlueField expert’s implementation. We
compare Alkali’s message reassembly and JSQ RSS perfor-
mance with a BlueField expert’s implementation. The expert
takes 14 hours to implement these two programs and tuning
performance as much as possible. Alkali adopts the unmod-
ified source as for other backends. As shown in Figure 16,
Alkali’s message reassembly performance is slightly lower
than the expert’s implementation (5.4% to 9.8%), this small
gap is because the expert smartly chooses to reuse the buffer
for the first packet in a message to store the aggregated data,
avoiding allocation overhead. This buffer reuse is a BlueField
backend-specific optimization that could be supported in the
future. For the JSQ RSS, the NIC experts tried multiple ver-
sions of the program to test different mappings and pipelining
methods, while Alkali generated code automatically generates
the pipeline and achieves a performance comparable to the
expert’s best implementation.
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